Wang Jiarong, Bi Luzheng, Fei Weijie
School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China.
Front Neurorobot. 2022 Apr 28;16:845127. doi: 10.3389/fnbot.2022.845127. eCollection 2022.
Decoding human hand movement from electroencephalograms (EEG) signals is essential for developing an active human augmentation system. Although existing studies have contributed much to decoding single-hand movement direction from EEG signals, decoding primary hand movement direction under the opposite hand movement condition remains open. In this paper, we investigated the neural signatures of the primary hand movement direction from EEG signals under the opposite hand movement and developed a novel decoding method based on non-linear dynamics parameters of movement-related cortical potentials (MRCPs). Experimental results showed significant differences in MRCPs between hand movement directions under an opposite hand movement. Furthermore, the proposed method performed well with an average binary decoding accuracy of 89.48 ± 5.92% under the condition of the opposite hand movement. This study may lay a foundation for the future development of EEG-based human augmentation systems for upper limbs impaired patients and healthy people and open a new avenue to decode other hand movement parameters (e.g., velocity and position) from EEG signals.
从脑电图(EEG)信号中解码人类手部运动对于开发主动式人体增强系统至关重要。尽管现有研究在从EEG信号中解码单手运动方向方面做出了很大贡献,但在对侧手运动条件下解码主要手部运动方向仍然是一个未解决的问题。在本文中,我们研究了在对侧手运动下从EEG信号中获取主要手部运动方向的神经特征,并基于运动相关皮层电位(MRCPs)的非线性动力学参数开发了一种新颖的解码方法。实验结果表明,在对侧手运动下,不同手部运动方向的MRCPs存在显著差异。此外,所提出的方法在对侧手运动条件下表现良好,平均二元解码准确率为89.48±5.92%。本研究可能为未来基于EEG的上肢受损患者和健康人的人体增强系统的发展奠定基础,并为从EEG信号中解码其他手部运动参数(如速度和位置)开辟一条新途径。