National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
University of the Chinese Academy of Sciences, Beijing, China.
Science. 2017 Mar 3;355(6328):962-965. doi: 10.1126/science.aai8898. Epub 2017 Feb 2.
Crop breeding aims to balance disease resistance with yield; however, single resistance (R) genes can lead to resistance breakdown, and R gene pyramiding may affect growth fitness. Here we report that the rice locus contains a cluster of genes encoding nucleotide-binding leucine-rich repeat (NLR) receptors that confer durable resistance to the fungus without yield penalty. Among these NLR receptors, PigmR confers broad-spectrum resistance, whereas PigmS competitively attenuates PigmR homodimerization to suppress resistance. expression, and thus -mediated resistance, are subjected to tight epigenetic regulation. increases seed production to counteract the yield cost induced by Therefore, our study reveals a mechanism balancing high disease resistance and yield through epigenetic regulation of paired antagonistic NLR receptors, providing a tool to develop elite crop varieties.
作物育种旨在平衡抗病性和产量;然而,单一的抗性(R)基因可能导致抗性丧失,而 R 基因的累加可能会影响生长适应性。在这里,我们报告说,水稻 位点包含一组编码核苷酸结合富含亮氨酸重复(NLR)受体的基因,这些基因赋予真菌的持久抗性,而不会牺牲产量。在这些 NLR 受体中,PigmR 赋予广谱抗性,而 PigmS 竞争性地减弱 PigmR 同源二聚化以抑制抗性。 的表达,从而介导的抗性,受到严格的表观遗传调控。 的表达增加了种子产量,以抵消由 引起的产量损失。因此,我们的研究揭示了通过对成对拮抗 NLR 受体的表观遗传调控来平衡高抗病性和产量的机制,为开发优良作物品种提供了一种工具。