鉴定乳腺癌影像学表型与分子亚型之间的关系:模型发现与外部验证。

Identifying relations between imaging phenotypes and molecular subtypes of breast cancer: Model discovery and external validation.

机构信息

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA.

Radiotherapy Department, First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, P.R. China.

出版信息

J Magn Reson Imaging. 2017 Oct;46(4):1017-1027. doi: 10.1002/jmri.25661. Epub 2017 Feb 8.

Abstract

PURPOSE

To determine whether dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) characteristics of the breast tumor and background parenchyma can distinguish molecular subtypes (ie, luminal A/B or basal) of breast cancer.

MATERIALS AND METHODS

In all, 84 patients from one institution and 126 patients from The Cancer Genome Atlas (TCGA) were used for discovery and external validation, respectively. Thirty-five quantitative image features were extracted from DCE-MRI (1.5 or 3T) including morphology, texture, and volumetric features, which capture both tumor and background parenchymal enhancement (BPE) characteristics. Multiple testing was corrected using the Benjamini-Hochberg method to control the false-discovery rate (FDR). Sparse logistic regression models were built using the discovery cohort to distinguish each of the three studied molecular subtypes versus the rest, and the models were evaluated in the validation cohort.

RESULTS

On univariate analysis in discovery and validation cohorts, two features characterizing tumor and two characterizing BPE were statistically significant in separating luminal A versus nonluminal A cancers; two features characterizing tumor were statistically significant for separating luminal B; one feature characterizing tumor and one characterizing BPE reached statistical significance for distinguishing basal (Wilcoxon P < 0.05, FDR < 0.25). In discovery and validation cohorts, multivariate logistic regression models achieved an area under the receiver operator characteristic curve (AUC) of 0.71 and 0.73 for luminal A cancer, 0.67 and 0.69 for luminal B cancer, and 0.66 and 0.79 for basal cancer, respectively.

CONCLUSION

DCE-MRI characteristics of breast cancer and BPE may potentially be used to distinguish among molecular subtypes of breast cancer.

LEVEL OF EVIDENCE

3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1017-1027.

摘要

目的

确定乳腺肿瘤和背景实质的动态对比增强磁共振成像(DCE-MRI)特征是否可区分乳腺癌的分子亚型(即 luminal A/B 或基底)。

材料与方法

本研究共纳入来自一家机构的 84 例患者和 TCGA 的 126 例患者,分别用于发现和外部验证。从 DCE-MRI(1.5 或 3T)中提取了 35 个定量图像特征,包括形态、纹理和容积特征,这些特征均能捕获肿瘤和背景实质增强(BPE)特征。使用 Benjamini-Hochberg 方法进行多重检验校正,以控制假发现率(FDR)。使用发现队列建立稀疏逻辑回归模型,以区分三种研究的分子亚型中的每一种与其他亚型,然后在验证队列中评估这些模型。

结果

在发现和验证队列的单变量分析中,两种特征可用于区分 luminal A 与非 luminal A 型癌症,两种特征可用于区分 luminal B 型癌症,两种特征用于区分基底型癌症,这些特征分别用于描述肿瘤和 BPE(Wilcoxon P<0.05,FDR<0.25)。在发现和验证队列中,多变量逻辑回归模型的受试者工作特征曲线(ROC)下面积分别为 0.71 和 0.73 用于区分 luminal A 型癌症,0.67 和 0.69 用于区分 luminal B 型癌症,0.66 和 0.79 用于区分基底型癌症。

结论

乳腺癌和 BPE 的 DCE-MRI 特征可能可用于区分乳腺癌的分子亚型。

证据水平

3 技术功效:阶段 3 J. Magn. Reson. Imaging 2017;46:1017-1027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索