Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati 781039, Assam, India.
Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London , 256 Gray's Inn Road, London WC1X 8LD, U.K.
ACS Appl Mater Interfaces. 2017 Mar 8;9(9):8000-8013. doi: 10.1021/acsami.6b16590. Epub 2017 Feb 22.
The anatomical complexity and slow regeneration capacity of hyaline cartilage at the osteochondral interface pose a great challenge in the repair of osteochondral defects (OCD). In this study, we utilized the processing feasibility offered by the sol derived 70S bioactive glass and silk fibroin (mulberry Bombyx mori and endemic Indian non-mulberry Antheraea assama), in fabricating a well-integrated, biomimetic scaffolding matrix with a coherent interface. Differences in surface properties such as wettability and amorphousness between the two silk groups resulted in profound variations in cell attachment and extracellular matrix protein deposition. Mechanical assessment showed that the biphasic composites exhibited both an elastic region pertinent for cartilage tissue and a stiff compression resistant region simulating the bone phase. In vitro biological studies revealed that the biphasic mats presented spatial confinement for the growth and maturation of both osteoblasts and chondrocytes, marked by increased alkaline phosphatase (ALP) activity, osteopontin (OPN), sulfated glycosaminoglycan (sGAG) and collagen secretion in the cocultured mats. The non-mulberry silk based biphasic composite mats performed better than their mulberry counterpart, as evidenced by enhanced expression levels of key cartilage and bone specific marker genes. Therefore, the developed biphasic scaffold show great promise for improving the current clinical strategies for osteochondral tissue repair.
在骨软骨界面处,透明软骨的解剖复杂性和缓慢的再生能力对骨软骨缺损(OCD)的修复构成了巨大挑战。在这项研究中,我们利用溶胶衍生的 70S 生物活性玻璃和丝素(桑蚕 Bombyx mori 和本地非桑蚕 Antheraea assama)提供的加工可行性,制造了一种具有良好整合性和仿生支架基质,具有连贯的界面。两种丝素组之间的表面性质差异,如润湿性和非晶态性,导致细胞附着和细胞外基质蛋白沉积有很大差异。力学评估表明,双相复合材料表现出弹性区域,适用于软骨组织,以及模拟骨相的刚性抗压区域。体外生物学研究表明,双相垫为成骨细胞和软骨细胞的生长和成熟提供了空间限制,表现为碱性磷酸酶(ALP)活性、骨桥蛋白(OPN)、硫酸化糖胺聚糖(sGAG)和胶原蛋白分泌增加。非桑蚕丝素基双相复合材料垫的性能优于桑蚕丝素基双相复合材料垫,这表现在关键软骨和骨特异性标记基因的表达水平增强。因此,所开发的双相支架为改善当前骨软骨组织修复的临床策略提供了巨大的潜力。