Kauhl Boris, Pieper Jonas, Schweikart Jürgen, Keste Andrea, Moskwyn Marita
Ärztliche Versorgung, AOK Nordost, Potsdam.
Fachbereich Bauingenieur- und Geoinformationswesen, Beuth Hochschule für Technik Berlin, Berlin.
Gesundheitswesen. 2018 Mar;80(S 02):S64-S70. doi: 10.1055/s-0042-123845. Epub 2017 Feb 16.
Understanding which population groups in which locations are at higher risk for type 2 diabetes mellitus (T2DM) allows efficient and cost-effective interventions targeting these risk-populations in great need in specific locations. The goal of this study was to analyze the spatial distribution of T2DM and to identify the location-specific, population-based risk factors using global and local spatial regression models. To display the spatial heterogeneity of T2DM, bivariate kernel density estimation was applied. An ordinary least squares regression model (OLS) was applied to identify population-based risk factors of T2DM. A geographically weighted regression model (GWR) was then constructed to analyze the spatially varying association between the identified risk factors and T2DM. T2DM is especially concentrated in the east and outskirts of Berlin. The OLS model identified proportions of persons aged 80 and older, persons without migration background, long-term unemployment, households with children and a negative association with single-parenting households as socio-demographic risk groups. The results of the GWR model point out important local variations of the strength of association between the identified risk factors and T2DM. The risk factors for T2DM depend largely on the socio-demographic composition of the neighborhoods in Berlin and highlight that a one-size-fits-all approach is not appropriate for the prevention of T2DM. Future prevention strategies should be tailored to target location-specific risk-groups.
了解哪些地区的哪些人群患2型糖尿病(T2DM)的风险较高,有助于针对特定地区有迫切需求的这些风险人群进行高效且具成本效益的干预。本研究的目的是分析T2DM的空间分布,并使用全局和局部空间回归模型确定特定地点、基于人群的风险因素。为了展示T2DM的空间异质性,应用了双变量核密度估计。应用普通最小二乘回归模型(OLS)来确定T2DM基于人群的风险因素。然后构建地理加权回归模型(GWR),以分析已确定的风险因素与T2DM之间的空间变化关联。T2DM尤其集中在柏林东部和郊区。OLS模型确定80岁及以上人群的比例、无移民背景的人群、长期失业者、有孩子的家庭以及与单亲家庭呈负相关为社会人口风险群体。GWR模型的结果指出了已确定的风险因素与T2DM之间关联强度的重要局部差异。T2DM的风险因素在很大程度上取决于柏林各社区的社会人口构成,并突出表明一刀切的方法不适用于T2DM的预防。未来的预防策略应针对特定地点的风险群体量身定制。