Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA.
Nat Commun. 2017 Feb 17;8:14282. doi: 10.1038/ncomms14282.
Accelerating the search for functional materials is a challenging problem. Here we develop an informatics-guided ab initio approach to accelerate the design and discovery of noncentrosymmetric materials. The workflow integrates group theory, informatics and density-functional theory to uncover design guidelines for predicting noncentrosymmetric compounds, which we apply to layered Ruddlesden-Popper oxides. Group theory identifies how configurations of oxygen octahedral rotation patterns, ordered cation arrangements and their interplay break inversion symmetry, while informatics tools learn from available data to select candidate compositions that fulfil the group-theoretical postulates. Our key outcome is the identification of 242 compositions after screening ∼3,200 that show potential for noncentrosymmetric structures, a 25-fold increase in the projected number of known noncentrosymmetric Ruddlesden-Popper oxides. We validate our predictions for 19 compounds using phonon calculations, among which 17 have noncentrosymmetric ground states including two potential multiferroics. Our approach enables rational design of materials with targeted crystal symmetries and functionalities.
加速功能材料的寻找是一个具有挑战性的问题。在这里,我们开发了一种信息学指导的从头算方法,以加速非中心对称材料的设计和发现。该工作流程集成了群论、信息学和密度泛函理论,以揭示预测非中心对称化合物的设计准则,我们将其应用于层状 Ruddlesden-Popper 氧化物。群论确定了氧八面体旋转模式、有序阳离子排列及其相互作用的构型如何打破反演对称性,而信息学工具则从可用数据中学习,以选择符合群论假设的候选成分。我们的主要成果是在筛选了约 3200 种可能的非中心对称结构的成分后,确定了 242 种成分,这是已知非中心对称 Ruddlesden-Popper 氧化物的预测数量的 25 倍增加。我们使用声子计算验证了对 19 种化合物的预测,其中 17 种具有非中心对称的基态,包括两种潜在的多铁性材料。我们的方法能够实现具有目标晶体对称性和功能的材料的合理设计。