Suppr超能文献

酵母毕赤酵母的动态基因组规模代谢建模

Dynamic genome-scale metabolic modeling of the yeast Pichia pastoris.

作者信息

Saitua Francisco, Torres Paulina, Pérez-Correa José Ricardo, Agosin Eduardo

机构信息

Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile.

出版信息

BMC Syst Biol. 2017 Feb 21;11(1):27. doi: 10.1186/s12918-017-0408-2.

Abstract

BACKGROUND

Pichia pastoris shows physiological advantages in producing recombinant proteins, compared to other commonly used cell factories. This yeast is mostly grown in dynamic cultivation systems, where the cell's environment is continuously changing and many variables influence process productivity. In this context, a model capable of explaining and predicting cell behavior for the rational design of bioprocesses is highly desirable. Currently, there are five genome-scale metabolic reconstructions of P. pastoris which have been used to predict extracellular cell behavior in stationary conditions.

RESULTS

In this work, we assembled a dynamic genome-scale metabolic model for glucose-limited, aerobic cultivations of Pichia pastoris. Starting from an initial model structure for batch and fed-batch cultures, we performed pre/post regression diagnostics to ensure that model parameters were identifiable, significant and sensitive. Once identified, the non-relevant ones were iteratively fixed until a priori robust modeling structures were found for each type of cultivation. Next, the robustness of these reduced structures was confirmed by calibrating the model with new datasets, where no sensitivity, identifiability or significance problems appeared in their parameters. Afterwards, the model was validated for the prediction of batch and fed-batch dynamics in the studied conditions. Lastly, the model was employed as a case study to analyze the metabolic flux distribution of a fed-batch culture and to unravel genetic and process engineering strategies to improve the production of recombinant Human Serum Albumin (HSA). Simulation of single knock-outs indicated that deviation of carbon towards cysteine and tryptophan formation improves HSA production. The deletion of methylene tetrahydrofolate dehydrogenase could increase the HSA volumetric productivity by 630%. Moreover, given specific bioprocess limitations and strain characteristics, the model suggests that implementation of a decreasing specific growth rate during the feed phase of a fed-batch culture results in a 25% increase of the volumetric productivity of the protein.

CONCLUSION

In this work, we formulated a dynamic genome scale metabolic model of Pichia pastoris that yields realistic metabolic flux distributions throughout dynamic cultivations. The model can be calibrated with experimental data to rationally propose genetic and process engineering strategies to improve the performance of a P. pastoris strain of interest.

摘要

背景

与其他常用的细胞工厂相比,巴斯德毕赤酵母在生产重组蛋白方面具有生理优势。这种酵母大多在动态培养系统中生长,在该系统中细胞环境不断变化,许多变量会影响过程生产力。在此背景下,非常需要一个能够解释和预测细胞行为以合理设计生物过程的模型。目前,已有五个巴斯德毕赤酵母的基因组规模代谢重建模型,用于预测静止条件下的细胞外行为。

结果

在这项工作中,我们构建了一个用于巴斯德毕赤酵母葡萄糖限制好氧培养的动态基因组规模代谢模型。从分批和补料分批培养的初始模型结构开始,我们进行了预/后回归诊断,以确保模型参数是可识别的、显著的和敏感的。一旦确定,不相关的参数就会被迭代固定,直到为每种培养类型找到先验稳健的建模结构。接下来,通过用新数据集校准模型来确认这些简化结构的稳健性,在这些数据集中其参数没有出现敏感性、可识别性或显著性问题。之后,该模型在研究条件下对分批和补料分批动态进行了预测验证。最后,该模型作为案例研究用于分析补料分批培养的代谢通量分布,并揭示提高重组人血清白蛋白(HSA)产量的遗传和过程工程策略。单基因敲除模拟表明,碳向半胱氨酸和色氨酸形成的偏离可提高HSA产量。亚甲基四氢叶酸脱氢酶的缺失可使HSA体积生产力提高630%。此外,考虑到特定的生物过程限制和菌株特性,该模型表明在补料分批培养的补料阶段实施特定生长速率的降低会使蛋白质的体积生产力提高25%。

结论

在这项工作中,我们构建了一个巴斯德毕赤酵母的动态基因组规模代谢模型,该模型在整个动态培养过程中产生现实的代谢通量分布。该模型可以用实验数据进行校准,以合理地提出遗传和过程工程策略,以提高感兴趣的巴斯德毕赤酵母菌株的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b94/5320773/3fdb463709b5/12918_2017_408_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验