Christenson James K, Jensen Matthew R, Goblirsch Brandon R, Mohamed Fatuma, Zhang Wei, Wilmot Carrie M, Wackett Lawrence P
Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota, USA.
BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA.
J Bacteriol. 2017 Apr 11;199(9). doi: 10.1128/JB.00890-16. Print 2017 May 1.
Bacteria from different phyla produce long-chain olefinic hydrocarbons derived from an OleA-catalyzed Claisen condensation of two fatty acyl coenzyme A (acyl-CoA) substrates, followed by reduction and oxygen elimination reactions catalyzed by the proteins OleB, OleC, and OleD. In this report, OleA, OleB, OleC, and OleD were individually purified as soluble proteins, and all were found to be essential for reconstituting hydrocarbon biosynthesis. Recombinant coexpression of tagged OleABCD proteins from in and purification over His and FLAG columns resulted in OleA separating, while OleBCD purified together, irrespective of which of the four Ole proteins were tagged. Hydrocarbon biosynthetic activity of copurified OleBCD assemblies could be reconstituted by adding separately purified OleA. Immunoblots of nondenaturing gels using anti-OleC reacted with crude protein lysate indicated the presence of a large protein assembly containing OleC in the native host. Negative-stain electron microscopy of recombinant OleBCD revealed distinct large structures with diameters primarily between 24 and 40 nm. Assembling OleB, OleC, and OleD into a complex may be important to maintain stereochemical integrity of intermediates, facilitate the movement of hydrophobic metabolites between enzyme active sites, and protect the cell against the highly reactive β-lactone intermediate produced by the OleC-catalyzed reaction. Bacteria biosynthesize hydrophobic molecules to maintain a membrane, store carbon, and for antibiotics that help them survive in their niche. The hydrophobic compounds are often synthesized by a multidomain protein or by large multienzyme assemblies. The present study reports on the discovery that long-chain olefinic hydrocarbons made by bacteria from different phyla are produced by multienzyme assemblies in The OleBCD multienzyme assemblies are thought to compartmentalize and sequester olefin biosynthesis from the rest of the cell. This system provides additional insights into how bacteria control specific biosynthetic pathways.
来自不同门的细菌产生长链烯烃类碳氢化合物,该过程始于OleA催化的两个脂肪酰辅酶A(酰基辅酶A)底物的克莱森缩合反应,随后由蛋白质OleB、OleC和OleD催化还原和脱氧反应。在本报告中,OleA、OleB、OleC和OleD均被单独纯化成为可溶性蛋白质,并且发现它们对于重建碳氢化合物生物合成至关重要。来自[具体来源未明确]的带标签的OleABCD蛋白在[具体宿主未明确]中进行重组共表达,并通过His和FLAG柱进行纯化,结果OleA分离出来,而OleBCD一起纯化,无论这四种Ole蛋白中哪一种被标记。通过添加单独纯化的OleA,可以重建共纯化的OleBCD组件的碳氢化合物生物合成活性。使用抗OleC对非变性凝胶进行免疫印迹,与[具体宿主未明确]粗蛋白裂解物反应,表明在天然宿主中存在一个包含OleC的大型蛋白质组件。重组OleBCD的负染色电子显微镜显示出直径主要在24至40纳米之间的独特大型结构。将OleB、OleC和OleD组装成一个复合物对于维持中间体的立体化学完整性、促进疏水性代谢物在酶活性位点之间的移动以及保护细胞免受OleC催化反应产生的高反应性β-内酯中间体影响可能很重要。细菌生物合成疏水分子以维持细胞膜、储存碳以及合成有助于它们在生态位中生存的抗生素。这些疏水性化合物通常由多结构域蛋白或大型多酶组件合成。本研究报告了一项发现,即来自不同门的细菌产生的长链烯烃类碳氢化合物是由[具体来源未明确]中的多酶组件产生的。OleBCD多酶组件被认为将烯烃生物合成与细胞的其他部分分隔开来并进行隔离。该系统为细菌如何控制特定生物合成途径提供了更多见解。