Suppr超能文献

玻璃无序模型的实空间重整化群理论

Real space renormalization group theory of disordered models of glasses.

作者信息

Angelini Maria Chiara, Biroli Giulio

机构信息

Dipartimento di Fisica, Ed. Marconi, "Sapienza" Università di Roma, 00185 Roma, Italy;

Institut Physique Théorique Commissariat à l'Énergie Atomique Saclay, CNRS Unité d'Immunorégulation 2306, 91191 Gif Sur Yvette, France.

出版信息

Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3328-3333. doi: 10.1073/pnas.1613126114. Epub 2017 Feb 21.

Abstract

We develop a real space renormalization group analysis of disordered models of glasses, in particular of the spin models at the origin of the random first-order transition theory. We find three fixed points, respectively, associated with the liquid state, with the critical behavior, and with the glass state. The latter two are zero-temperature ones; this provides a natural explanation of the growth of effective activation energy scale and the concomitant huge increase of relaxation time approaching the glass transition. The lower critical dimension depends on the nature of the interacting degrees of freedom and is higher than three for all models. This does not prevent 3D systems from being glassy. Indeed, we find that their renormalization group flow is affected by the fixed points existing in higher dimension and in consequence is nontrivial. Within our theoretical framework, the glass transition results in an avoided phase transition.

摘要

我们对玻璃的无序模型,特别是随机一级相变理论起源的自旋模型,开展了实空间重整化群分析。我们分别找到了三个不动点,它们分别与液态、临界行为以及玻璃态相关。后两个是零温不动点;这为有效激活能尺度的增长以及接近玻璃化转变时弛豫时间随之大幅增加提供了一个自然的解释。下临界维度取决于相互作用自由度的性质,并且对于所有模型都高于三维。这并不妨碍三维系统成为玻璃态。实际上,我们发现它们的重整化群流受到高维中存在的不动点的影响,因此是非平凡的。在我们的理论框架内,玻璃化转变导致了一个避免的相变。

相似文献

1
Real space renormalization group theory of disordered models of glasses.玻璃无序模型的实空间重整化群理论
Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3328-3333. doi: 10.1073/pnas.1613126114. Epub 2017 Feb 21.
5
Renormalization group analysis of the random first-order transition.重整化群分析随机一阶相变。
Phys Rev Lett. 2011 Mar 18;106(11):115705. doi: 10.1103/PhysRevLett.106.115705. Epub 2011 Mar 17.
7
Functional renormalization group at large N for disordered systems.大N情形下无序系统的泛函重整化群
Phys Rev Lett. 2002 Sep 16;89(12):125702. doi: 10.1103/PhysRevLett.89.125702. Epub 2002 Aug 27.
8
Origin of the growing length scale in M-p-spin glass models.M - p - 自旋玻璃模型中增长长度尺度的起源
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 1):052501. doi: 10.1103/PhysRevE.86.052501. Epub 2012 Nov 16.
10
Random pinning in glassy spin models with plaquette interactions.具有面元相互作用的玻璃态自旋模型中的随机钉扎
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 1):021120. doi: 10.1103/PhysRevE.85.021120. Epub 2012 Feb 15.

引用本文的文献

1
Fast contribution to the activation energy of a glass-forming liquid.对玻璃形成液体活化能的快速贡献。
Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16736-16741. doi: 10.1073/pnas.1904809116. Epub 2019 Aug 7.
2
Probing large viscosities in glass-formers with nonequilibrium simulations.用非平衡模拟探究玻璃形成体中的大粘度。
Proc Natl Acad Sci U S A. 2017 Jul 25;114(30):7952-7957. doi: 10.1073/pnas.1705978114. Epub 2017 Jul 10.
3
Glass transition imminent, resistance is futile.玻璃化转变即将来临,抵抗徒劳无功。
Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3289-3291. doi: 10.1073/pnas.1702083114. Epub 2017 Mar 20.

本文引用的文献

1
Point-to-set lengths, local structure, and glassiness.点到集的长度、局部结构和玻璃态
Phys Rev E. 2016 Sep;94(3-1):032605. doi: 10.1103/PhysRevE.94.032605. Epub 2016 Sep 22.
3
Evidence of a one-step replica symmetry breaking in a three-dimensional Potts glass model.三维Potts玻璃模型中一步复制对称破缺的证据。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):020102. doi: 10.1103/PhysRevE.91.020102. Epub 2015 Feb 20.
4
Ensemble renormalization group for the random-field hierarchical model.随机场分层模型的系综重整化群
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032132. doi: 10.1103/PhysRevE.89.032132. Epub 2014 Mar 26.
6
Perspective: The glass transition.观点:玻璃化转变。
J Chem Phys. 2013 Mar 28;138(12):12A301. doi: 10.1063/1.4795539.
7
Origin of the growing length scale in M-p-spin glass models.M - p - 自旋玻璃模型中增长长度尺度的起源
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 1):052501. doi: 10.1103/PhysRevE.86.052501. Epub 2012 Nov 16.
8
Renormalization group analysis of the random first-order transition.重整化群分析随机一阶相变。
Phys Rev Lett. 2011 Mar 18;106(11):115705. doi: 10.1103/PhysRevLett.106.115705. Epub 2011 Mar 17.
9
Hierarchical random energy model of a spin glass.自旋玻璃的分层随机能量模型。
Phys Rev Lett. 2010 Mar 26;104(12):127206. doi: 10.1103/PhysRevLett.104.127206.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验