E. L. Ginzton Laboratory, Stanford University , Stanford, California 94305, United States.
3rd Institute of Physics, IQST, and Research Center SCOPE, University of Stuttgart , 70569 Stuttgart, Germany.
Nano Lett. 2017 Mar 8;17(3):1782-1786. doi: 10.1021/acs.nanolett.6b05102. Epub 2017 Feb 24.
Silicon carbide is a promising platform for single photon sources, quantum bits (qubits), and nanoscale sensors based on individual color centers. Toward this goal, we develop a scalable array of nanopillars incorporating single silicon vacancy centers in 4H-SiC, readily available for efficient interfacing with free-space objective and lensed-fibers. A commercially obtained substrate is irradiated with 2 MeV electron beams to create vacancies. Subsequent lithographic process forms 800 nm tall nanopillars with 400-1400 nm diameters. We obtain high collection efficiency of up to 22 kcounts/s optical saturation rates from a single silicon vacancy center while preserving the single photon emission and the optically induced electron-spin polarization properties. Our study demonstrates silicon carbide as a readily available platform for scalable quantum photonics architecture relying on single photon sources and qubits.
碳化硅是一种很有前途的平台,可用于基于单个色心的单光子源、量子位(qubit)和纳米级传感器。为此,我们开发了一种可扩展的纳米柱阵列,其中包含 4H-SiC 中的单个硅空位中心,可与自由空间物镜和透镜光纤高效接口。商业获得的衬底用 2 MeV 电子束辐照以产生空位。随后的光刻工艺形成 800nm 高的纳米柱,直径为 400-1400nm。我们从单个硅空位中心获得高达 22 kcounts/s 光学饱和率的高光收集效率,同时保持单光子发射和光诱导电子自旋极化特性。我们的研究表明,碳化硅是一种现成的平台,可用于基于单光子源和量子位的可扩展量子光子学架构。