Suppr超能文献

语义距离任务:用语义网络路径长度量化语义距离。

The semantic distance task: Quantifying semantic distance with semantic network path length.

作者信息

Kenett Yoed N, Levi Effi, Anaki David, Faust Miriam

机构信息

Department of Psychology, University of Pennsylvania.

Institute of Computer Science, The Hebrew University at Jerusalem.

出版信息

J Exp Psychol Learn Mem Cogn. 2017 Sep;43(9):1470-1489. doi: 10.1037/xlm0000391. Epub 2017 Feb 27.

Abstract

Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We propose a novel approach to computing semantic distance, based on network science methodology. Path length in a semantic network represents the amount of steps needed to traverse from 1 word in the network to the other. We examine whether path length can be used as a measure of semantic distance, by investigating how path length affect performance in a semantic relatedness judgment task and recall from memory. Our results show a differential effect on performance: Up to 4 steps separating between word-pairs, participants exhibit an increase in reaction time (RT) and decrease in the percentage of word-pairs judged as related. From 4 steps onward, participants exhibit a significant decrease in RT and the word-pairs are dominantly judged as unrelated. Furthermore, we show that as path length between word-pairs increases, success in free- and cued-recall decreases. Finally, we demonstrate how our measure outperforms computational methods measuring semantic distance (LSA and positive pointwise mutual information) in predicting participants RT and subjective judgments of semantic strength. Thus, we provide a computational alternative to computing semantic distance. Furthermore, this approach addresses key issues in cognitive theory, namely the breadth of the spreading activation process and the effect of semantic distance on memory retrieval. (PsycINFO Database Record

摘要

语义距离是认知过程中的一个决定性因素,比如在对语义记忆起作用的语义启动中。计算语义距离的主要计算方法是通过潜在语义分析(LSA)。然而,有人对这种方法提出了反对意见,主要是因为它在预测语义启动方面的失败。我们基于网络科学方法提出了一种计算语义距离的新方法。语义网络中的路径长度表示从网络中的一个单词遍历到另一个单词所需的步数。我们通过研究路径长度如何影响语义相关性判断任务中的表现以及记忆回忆,来检验路径长度是否可以用作语义距离的一种度量。我们的结果显示了对表现的不同影响:单词对之间相隔多达4步时,参与者的反应时间(RT)增加,被判断为相关的单词对百分比下降。从4步往后,参与者的RT显著下降,并且单词对主要被判断为不相关。此外,我们表明随着单词对之间路径长度的增加,自由回忆和线索回忆的成功率下降。最后,我们证明了在预测参与者的RT和语义强度的主观判断方面,我们的度量如何优于测量语义距离的计算方法(LSA和正点互信息)。因此,我们提供了一种计算语义距离的替代方法。此外,这种方法解决了认知理论中的关键问题,即扩散激活过程的广度以及语义距离对记忆检索的影响。(PsycINFO数据库记录)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验