Department of Chemistry and Biochemistry, University of Colorado Boulder , Boulder, Colorado 80309, United States.
Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States.
J Am Chem Soc. 2017 Mar 29;139(12):4493-4505. doi: 10.1021/jacs.7b00700. Epub 2017 Mar 14.
2,2':6',2″-Terpyridyl (tpy) ligands modified by fluorine (dftpy), chlorine (dctpy), or bromine (dbtpy) substitution at the 6- and 6″-positions are used to synthesize a series of bis-homoleptic Fe(II) complexes. Two of these species, [Fe(dctpy)] and [Fe(dbtpy)], which incorporate the larger dctpy and dbtpy ligands, assume a high-spin quintet ground state due to substituent-induced intramolecular strain. The smaller fluorine atoms in [Fe(dftpy)] enable spin crossover with a T of 220 K and a mixture of low-spin (singlet) and high-spin (quintet) populations at room temperature. Taking advantage of this equilibrium, dynamics originating from either the singlet or quintet manifold can be explored using variable wavelength laser excitation. Pumping at 530 nm leads to ultrafast nonradiative relaxation from the singlet metal-to-ligand charge transfer (MLCT) excited state into a quintet metal centered state (MC) as has been observed for prototypical low-spin Fe(II) polypyridine complexes such as [Fe(tpy)]. On the other hand, pumping at 400 nm excites the molecule into the quintet manifold (MLCT ← MC) and leads to the observation of a greatly increased MLCT lifetime of 14.0 ps. Importantly, this measurement enables an exploration of how the lifetime of the MLCT (or MLCT, in the event of intersystem crossing) responds to the structural modifications of the series as a whole. We find that increasing the amount of steric strain serves to extend the lifetime of the MLCT from 14.0 ps for [Fe(dftpy)] to the largest known value at 17.4 ps for [Fe(dbtpy)]. These data support the design hypothesis wherein interligand steric interactions are employed to limit conformational dynamics and/or alter relative state energies, thereby slowing nonradiative loss of charge-transfer energy.
2,2':6',2″-三联吡啶(tpy)配体通过在 6-和 6″-位的氟(dftpy)、氯(dctpy)或溴(dbtpy)取代进行修饰,用于合成一系列双同型 Fe(II)配合物。这些物种中的两种,[Fe(dctpy)]和[Fe(dbtpy)],由于取代基诱导的分子内应变,采用高自旋 quintet 基态。[Fe(dftpy)]中的较小氟原子能够进行自旋交叉,其 T 为 220 K,在室温下存在低自旋(单重态)和高自旋(五重态)的混合物。利用这种平衡,可以使用可变波长激光激发来探索来自单重态或五重态的动力学。在 530nm 处的泵浦导致超快的非辐射弛豫从单重态金属-配体电荷转移(MLCT)激发态进入五重态金属中心态(MC),如典型的低自旋 Fe(II) 多吡啶配合物[Fe(tpy)] 所观察到的那样。另一方面,在 400nm 处的泵浦将分子激发到五重态(MLCT←MC),并导致观察到 MLCT 寿命大大增加到 14.0ps。重要的是,这项测量使我们能够探索 MLCT 的寿命(或在发生系间窜越的情况下的 MLCT)如何响应整个系列的结构修饰。我们发现,增加位阻应变的程度会将 MLCT 的寿命从[Fe(dftpy)]的 14.0ps 延长到[Fe(dbtpy)]的已知最长寿命 17.4ps。这些数据支持了设计假设,即配体间的位阻相互作用用于限制构象动力学和/或改变相对状态能量,从而减缓电荷转移能量的非辐射损失。