Fujii Namiki, Narita Takumi, Okita Naoyuki, Kobayashi Masaki, Furuta Yurika, Chujo Yoshikazu, Sakai Masahiro, Yamada Atsushi, Takeda Kanae, Konishi Tomokazu, Sudo Yuka, Shimokawa Isao, Higami Yoshikazu
Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
Aging Cell. 2017 Jun;16(3):508-517. doi: 10.1111/acel.12576. Epub 2017 Mar 3.
Caloric restriction (CR) can delay onset of several age-related pathophysiologies and extend lifespan in various species, including rodents. CR also induces metabolic remodeling involved in activation of lipid metabolism, enhancement of mitochondrial biogenesis, and reduction of oxidative stress in white adipose tissue (WAT). In studies using genetically modified mice with extended lifespans, WAT characteristics influenced mammalian lifespans. However, molecular mechanisms underlying CR-associated metabolic remodeling of WAT remain unclear. Sterol regulatory element-binding protein-1c (Srebp-1c), a master transcription factor of fatty acid (FA) biosynthesis, is responsible for the pathogenesis of fatty liver (steatosis). Our study showed that, under CR conditions, Srebp-1c enhanced mitochondrial biogenesis via increased expression of peroxisome proliferator-activated receptor gamma coactivator-1α (Pgc-1α) and upregulated expression of proteins involved in FA biosynthesis within WAT. However, via Srebp-1c, most of these CR-associated metabolic alterations were not observed in other tissues, including the liver. Moreover, our data indicated that Srebp-1c may be an important factor both for CR-associated suppression of oxidative stress, through increased synthesis of glutathione in WAT, and for the prolongevity action of CR. Our results strongly suggested that Srebp-1c, the primary FA biosynthesis-promoting transcriptional factor implicated in fatty liver disease, is also the food shortage-responsive factor in WAT. This indicated that Srebp-1c is a key regulator of metabolic remodeling leading to the beneficial effects of CR.
热量限制(CR)可以延缓多种与年龄相关的病理生理过程的发生,并延长包括啮齿动物在内的各种物种的寿命。CR还会引发代谢重塑,涉及脂质代谢的激活、线粒体生物合成的增强以及白色脂肪组织(WAT)中氧化应激的降低。在使用寿命延长的转基因小鼠的研究中,WAT的特征影响了哺乳动物的寿命。然而,CR相关的WAT代谢重塑的分子机制仍不清楚。固醇调节元件结合蛋白-1c(Srebp-1c)是脂肪酸(FA)生物合成的主要转录因子,与脂肪肝(脂肪变性)的发病机制有关。我们的研究表明,在CR条件下,Srebp-1c通过增加过氧化物酶体增殖物激活受体γ共激活因子-1α(Pgc-1α)的表达来增强线粒体生物合成,并上调WAT中参与FA生物合成的蛋白质的表达。然而,通过Srebp-1c,在包括肝脏在内的其他组织中未观察到这些与CR相关的大多数代谢改变。此外,我们的数据表明Srebp-1c可能是CR相关的氧化应激抑制的重要因素,通过增加WAT中谷胱甘肽的合成,也是CR延长寿命作用的重要因素。我们的结果强烈表明,Srebp-1c是与脂肪肝疾病相关的促进FA生物合成的主要转录因子,也是WAT中对食物短缺作出反应的因子。这表明Srebp-1c是导致CR有益作用的代谢重塑的关键调节因子。