Suppr超能文献

疼痛检测量表的测量属性:对社区居住的神经性疼痛成年患者的反应进行拉施分析。

Measurement properties of painDETECT: Rasch analysis of responses from community-dwelling adults with neuropathic pain.

作者信息

Packham Tara L, Cappelleri Joseph C, Sadosky Alesia, MacDermid Joy C, Brunner Florian

机构信息

School of Rehabilitation Sciences, McMaster University, 1400 Main St. W., Hamilton, ON, L8S 1C7, Canada.

Pfizer Inc, Groton, CT, USA.

出版信息

BMC Neurol. 2017 Mar 4;17(1):48. doi: 10.1186/s12883-017-0825-2.

Abstract

BACKGROUND

painDETECT (PD-Q) is a self-reported assessment of pain qualities developed as a screening tool for pain of neuropathic origin. Rasch analysis is a strategy for examining the measurement characteristics of a scale using a form of item response theory. We conducted a Rasch analysis to consider if the scoring and measurement properties of PD-Q would support its use as an outcome measure.

METHODS

Rasch analysis was conducted on PD-Q scores drawn from a cross-sectional study of the burden and costs of NeP. The analysis followed an iterative process based on recommendations in the literature, including examination of sequential scoring categories, unidimensionality, reliability and differential item function. Data from 624 persons with a diagnosis of painful diabetic polyneuropathy, small fibre neuropathy, and neuropathic pain associated with chronic low back pain, spinal cord injury, HIV-related pain, or chronic post-surgical pain was used for this analysis.

RESULTS

PD-Q demonstrated fit to the Rasch model after adjustments of scoring categories for four items, and omission of the time course and radiating questions. The resulting seven-item scale of pain qualities demonstrated good reliability with a person-separation index of 0.79. No scoring bias (differential item functioning) was found for this version.

CONCLUSIONS

Rasch modelling suggests the seven pain-qualities items from PD-Q may be used as an outcome measure. Further research is required to confirm validity and responsiveness in a clinical setting.

摘要

背景

painDETECT(PD-Q)是一种自我报告的疼痛性质评估工具,旨在作为神经性疼痛来源的筛查工具。Rasch分析是一种使用项目反应理论形式来检验量表测量特征的策略。我们进行了Rasch分析,以考量PD-Q的评分和测量特性是否支持其作为一种结果测量指标。

方法

对从一项关于神经病理性疼痛(NeP)负担和成本的横断面研究中获取的PD-Q评分进行Rasch分析。该分析遵循基于文献建议的迭代过程,包括对连续评分类别、单维性、信度和项目功能差异的检验。本分析使用了624例诊断为糖尿病性周围神经病变、小纤维神经病变以及与慢性下腰痛、脊髓损伤、HIV相关疼痛或慢性术后疼痛相关的神经病理性疼痛患者的数据。

结果

在对四个项目的评分类别进行调整,并删除时间进程和放射问题后,PD-Q符合Rasch模型。由此产生的七个疼痛性质量表显示出良好的信度,个人分离指数为0.79。该版本未发现评分偏差(项目功能差异)。

结论

Rasch模型表明,PD-Q中的七个疼痛性质项目可作为一种结果测量指标。需要进一步研究以在临床环境中确认其效度和反应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2125/5336691/d0e664ddda10/12883_2017_825_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验