Suppr超能文献

雄性大鼠行为测试组中的个体差异:一种多元统计方法。

Individual Differences in Male Rats in a Behavioral Test Battery: A Multivariate Statistical Approach.

作者信息

Feyissa Daniel D, Aher Yogesh D, Engidawork Ephrem, Höger Harald, Lubec Gert, Korz Volker

机构信息

Department of Pediatrics, Medical University of Vienna Vienna, Austria.

School of Pharmacy, College of Health Sciences, Addis Ababa University Addis Ababa, Ethiopia.

出版信息

Front Behav Neurosci. 2017 Feb 17;11:26. doi: 10.3389/fnbeh.2017.00026. eCollection 2017.

Abstract

Animal models for anxiety, depressive-like and cognitive diseases or aging often involve testing of subjects in behavioral test batteries. The large number of test variables with different mean variations and within and between test correlations often constitute a significant problem in determining essential variables to assess behavioral patterns and their variation in individual animals as well as appropriate statistical treatment. Therefore, we applied a multivariate approach (principal component analysis) to analyse the behavioral data of 162 male adult Sprague-Dawley rats that underwent a behavioral test battery including commonly used tests for spatial learning and memory (holeboard) and different behavioral patterns (open field, elevated plus maze, forced swim test) as well as for motor abilities (Rota rod). The high dimensional behavioral results were reduced to fewer components associated with spatial cognition, general activity, anxiety-, and depression-like behavior and motor ability. The loading scores of individual rats on these different components allow an assessment and the distribution of individual features in a population of animals. The reduced number of components can be used also for statistical calculations like appropriate sample sizes for valid discriminations between experimental groups, which otherwise have to be done on each variable. Because the animals were intact, untreated and experimentally naïve the results reflect trait patterns of behavior and thus individuality. The distribution of animals with high or low levels of anxiety, depressive-like behavior, general activity and cognitive features in a local population provides information of the probability of their appeareance in experimental samples and thus may help to avoid biases. However, such an analysis initially requires a large cohort of animals in order to gain a valid assessment.

摘要

用于焦虑、抑郁样及认知疾病或衰老的动物模型通常涉及在行为测试组中对实验对象进行测试。大量具有不同平均变化以及测试内和测试间相关性的测试变量,在确定用于评估个体动物行为模式及其变化的关键变量以及适当的统计处理方面,常常构成重大问题。因此,我们应用了一种多变量方法(主成分分析)来分析162只成年雄性Sprague-Dawley大鼠的行为数据,这些大鼠接受了一组行为测试,包括常用的空间学习和记忆测试(洞板试验)、不同的行为模式测试(旷场试验、高架十字迷宫试验、强迫游泳试验)以及运动能力测试(转棒试验)。高维度的行为结果被简化为与空间认知、一般活动、焦虑样和抑郁样行为以及运动能力相关的较少成分。个体大鼠在这些不同成分上的负荷得分有助于评估动物群体中个体特征的分布情况。减少后的成分数量还可用于统计计算,如确定实验组间有效区分所需的合适样本量,否则必须对每个变量进行此类计算。由于这些动物未受损伤、未接受处理且未进行过实验,其结果反映了行为的特质模式,进而体现了个体差异。当地群体中具有高或低水平焦虑、抑郁样行为、一般活动和认知特征的动物分布情况,提供了它们在实验样本中出现概率的信息,从而有助于避免偏差。然而,这种分析最初需要大量的动物群体才能获得有效的评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验