Suppr超能文献

词汇判断任务中证据变异性的扩散决策模型分析。

A diffusion decision model analysis of evidence variability in the lexical decision task.

机构信息

School of Psychology, University of Newcastle, Callaghan, NSW, 2308, Australia.

Melbourne School of Psychological Sciences, Melbourne, Australia.

出版信息

Psychon Bull Rev. 2017 Dec;24(6):1949-1956. doi: 10.3758/s13423-017-1259-y.

Abstract

The lexical-decision task is among the most commonly used paradigms in psycholinguistics. In both the signal-detection theory and Diffusion Decision Model (DDM; Ratcliff, Gomez, & McKoon, Psychological Review, 111, 159-182, 2004) frameworks, lexical-decisions are based on a continuous source of word-likeness evidence for both words and non-words. The Retrieving Effectively from Memory model of Lexical-Decision (REM-LD; Wagenmakers et al., Cognitive Psychology, 48(3), 332-367, 2004) provides a comprehensive explanation of lexical-decision data and makes the prediction that word-likeness evidence is more variable for words than non-words and that higher frequency words are more variable than lower frequency words. To test these predictions, we analyzed five lexical-decision data sets with the DDM. For all data sets, drift-rate variability changed across word frequency and non-word conditions. For the most part, REM-LD's predictions about the ordering of evidence variability across stimuli in the lexical-decision task were confirmed.

摘要

词汇判断任务是心理语言学中最常用的范式之一。在信号检测理论和扩散决策模型(DDM;Ratcliff、Gomez 和 McKoon,《心理评论》,111,159-182,2004)框架中,词汇判断基于词和非词的连续词汇相似性证据源。词汇判断的有效记忆检索模型(REM-LD;Wagenmakers 等人,《认知心理学》,48(3),332-367,2004)为词汇判断数据提供了全面的解释,并做出了预测,即词汇相似性证据对于单词比非单词更具可变性,并且高频词比低频词更具可变性。为了检验这些预测,我们使用 DDM 分析了五个词汇判断数据集。对于所有数据集,漂移率变异性随单词频率和非单词条件而变化。在大多数情况下,REM-LD 对词汇判断任务中刺激之间证据变异性排序的预测得到了证实。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验