Suppr超能文献

使用定量放射组学方法预测肺肿瘤的良恶性

Prediction of malignant and benign of lung tumor using a quantitative radiomic method.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1272-1275. doi: 10.1109/EMBC.2016.7590938.

Abstract

Lung cancer is the leading cause of cancer mortality around the world, the early diagnosis of lung cancer plays a very important role in therapeutic regimen selection. However, lung cancers are spatially and temporally heterogeneous; this limits the use of invasive biopsy. But radiomics which refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features has the ability to capture intra-tumoural heterogeneity in a non-invasive way. Here we carry out a radiomic analysis of 150 features quantifying lung tumour image intensity, shape and texture. These features are extracted from 593 patients computed tomography (CT) data on Lung Image Database Consortium Image Database Resource Initiative (LIDC-IDRI) dataset. By using support vector machine, we find that a large number of quantitative radiomic features have diagnosis power. The accuracy of prediction of malignant of lung tumor is 86% in training set and 76.1% in testing set. As CT imaging of lung tumor is widely used in routine clinical practice, our radiomic classifier will be a valuable tool which can help clinical doctor diagnose the lung cancer.

摘要

肺癌是全球癌症死亡的主要原因,肺癌的早期诊断在治疗方案选择中起着非常重要的作用。然而,肺癌在空间和时间上具有异质性,这限制了侵入性活检的应用。但是,放射组学通过应用大量定量图像特征对肿瘤表型进行全面量化,有能力以非侵入性方式捕捉肿瘤内的异质性。在此,我们对150个量化肺肿瘤图像强度、形状和纹理的特征进行了放射组学分析。这些特征是从肺影像数据库联盟图像数据库资源倡议(LIDC-IDRI)数据集中的593例患者的计算机断层扫描(CT)数据中提取的。通过使用支持向量机,我们发现大量定量放射组学特征具有诊断能力。肺肿瘤恶性预测在训练集中的准确率为86%,在测试集中为76.1%。由于肺肿瘤的CT成像在常规临床实践中广泛应用,我们的放射组学分类器将成为帮助临床医生诊断肺癌的有价值工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验