Suppr超能文献

将生物协变量整合到基于基因表达的辐射敏感性预测因子中。

Integrating Biological Covariates into Gene Expression-Based Predictors of Radiation Sensitivity.

作者信息

Kamath Vidya P, Torres-Roca Javier F, Eschrich Steven A

机构信息

Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.

Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.

出版信息

Int J Genomics. 2017;2017:6576840. doi: 10.1155/2017/6576840. Epub 2017 Feb 8.

Abstract

The use of gene expression-based classifiers has resulted in a number of promising potential signatures of patient diagnosis, prognosis, and response to therapy. However, these approaches have also created difficulties in trying to use gene expression alone to predict a complex trait. A practical approach to this problem is to integrate existing biological knowledge with gene expression to build a composite predictor. We studied the problem of predicting radiation sensitivity within human cancer cell lines from gene expression. First, we present evidence for the need to integrate known biological conditions (tissue of origin, RAS, and p53 mutational status) into a gene expression prediction problem involving radiation sensitivity. Next, we demonstrate using linear regression, a technique for incorporating this knowledge. The resulting correlations between gene expression and radiation sensitivity improved through the use of this technique (best-fit adjusted increased from 0.3 to 0.84). Overfitting of data was examined through the use of simulation. The results reinforce the concept that radiation sensitivity is not driven solely by gene expression, but rather by a combination of distinct parameters. We show that accounting for biological heterogeneity significantly improves the ability of the model to identify genes that are associated with radiosensitivity.

摘要

基于基因表达的分类器的使用已经产生了许多关于患者诊断、预后和治疗反应的有前景的潜在特征。然而,这些方法在试图仅使用基因表达来预测复杂性状时也带来了困难。解决这个问题的一个实际方法是将现有的生物学知识与基因表达相结合,构建一个复合预测器。我们研究了从基因表达预测人类癌细胞系辐射敏感性的问题。首先,我们提供了将已知生物学条件(组织来源、RAS和p53突变状态)整合到涉及辐射敏感性的基因表达预测问题中的必要性的证据。接下来,我们展示了使用线性回归这种纳入该知识的技术。通过使用该技术,基因表达与辐射敏感性之间的相关性得到了改善(最佳拟合调整 从0.3提高到0.84)。通过模拟检查了数据的过度拟合情况。结果强化了这样一个概念,即辐射敏感性并非仅由基因表达驱动,而是由不同参数的组合驱动。我们表明,考虑生物学异质性显著提高了模型识别与放射敏感性相关基因的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be4a/5320380/88bcfc27f30b/IJG2017-6576840.001.jpg

相似文献

1
Integrating Biological Covariates into Gene Expression-Based Predictors of Radiation Sensitivity.
Int J Genomics. 2017;2017:6576840. doi: 10.1155/2017/6576840. Epub 2017 Feb 8.
5
Predictive factors in radiotherapy for non-small cell lung cancer: present status.
Lung Cancer. 2001 Jan;31(1):43-56. doi: 10.1016/s0169-5002(00)00156-2.
7
Mixture classification model based on clinical markers for breast cancer prognosis.
Artif Intell Med. 2010 Feb-Mar;48(2-3):129-37. doi: 10.1016/j.artmed.2009.07.008. Epub 2009 Dec 14.
8
9
Increased radiosensitivity with chronic hypoxia in four human tumor cell lines.
Int J Radiat Oncol Biol Phys. 2002 Nov 1;54(3):910-20. doi: 10.1016/s0360-3016(02)02963-2.

引用本文的文献

1
Identifying Cancer Driver Pathways Based on the Mouth Brooding Fish Algorithm.
Entropy (Basel). 2023 May 24;25(6):841. doi: 10.3390/e25060841.
3
Identification and validation of single-sample breast cancer radiosensitivity gene expression predictors.
Breast Cancer Res. 2018 Jul 4;20(1):64. doi: 10.1186/s13058-018-0978-y.
5
Radiation biology and oncology in the genomic era.
Br J Radiol. 2018 Nov;91(1091):20170949. doi: 10.1259/bjr.20170949. Epub 2018 Jun 14.

本文引用的文献

1
A genome-based model for adjusting radiotherapy dose (GARD): a retrospective, cohort-based study.
Lancet Oncol. 2017 Feb;18(2):202-211. doi: 10.1016/S1470-2045(16)30648-9. Epub 2016 Dec 18.
3
Integration of a Radiosensitivity Molecular Signature Into the Assessment of Local Recurrence Risk in Breast Cancer.
Int J Radiat Oncol Biol Phys. 2015 Nov 1;93(3):631-8. doi: 10.1016/j.ijrobp.2015.06.021. Epub 2015 Jun 25.
4
The radiosensitivity index predicts for overall survival in glioblastoma.
Oncotarget. 2015 Oct 27;6(33):34414-22. doi: 10.18632/oncotarget.5437.
5
Radiosensitivity index predicts for survival with adjuvant radiation in resectable pancreatic cancer.
Radiother Oncol. 2015 Oct;117(1):159-64. doi: 10.1016/j.radonc.2015.07.018. Epub 2015 Jul 30.
7
Validation of a radiosensitivity molecular signature in breast cancer.
Clin Cancer Res. 2012 Sep 15;18(18):5134-43. doi: 10.1158/1078-0432.CCR-12-0891. Epub 2012 Jul 25.
8
Systems biology modeling of the radiation sensitivity network: a biomarker discovery platform.
Int J Radiat Oncol Biol Phys. 2009 Oct 1;75(2):497-505. doi: 10.1016/j.ijrobp.2009.05.056.
9
A gene expression model of intrinsic tumor radiosensitivity: prediction of response and prognosis after chemoradiation.
Int J Radiat Oncol Biol Phys. 2009 Oct 1;75(2):489-96. doi: 10.1016/j.ijrobp.2009.06.014.
10
Predictive biomarkers: identification and verification.
J Clin Oncol. 2009 Jun 10;27(17):2743-4. doi: 10.1200/JCO.2008.21.5087. Epub 2009 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验