Suppr超能文献

基于张量的多通道重建用于从动态对比增强磁共振成像中识别乳腺肿瘤。

Tensor based multichannel reconstruction for breast tumours identification from DCE-MRIs.

作者信息

Yin X-X, Hadjiloucas S, Chen J-H, Zhang Y, Wu J-L, Su M-Y

机构信息

Centre for Applied Informatics School of Engineering and Science, Victoria University, Melbourne, Australia.

School of Systems Engineering and Department of Bioengineering, University of Reading, Reading RG6 6AY, United Kingdom.

出版信息

PLoS One. 2017 Mar 10;12(3):e0172111. doi: 10.1371/journal.pone.0172111. eCollection 2017.

Abstract

A new methodology based on tensor algebra that uses a higher order singular value decomposition to perform three-dimensional voxel reconstruction from a series of temporal images obtained using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is proposed. Principal component analysis (PCA) is used to robustly extract the spatial and temporal image features and simultaneously de-noise the datasets. Tumour segmentation on enhanced scaled (ES) images performed using a fuzzy C-means (FCM) cluster algorithm is compared with that achieved using the proposed tensorial framework. The proposed algorithm explores the correlations between spatial and temporal features in the tumours. The multi-channel reconstruction enables improved breast tumour identification through enhanced de-noising and improved intensity consistency. The reconstructed tumours have clear and continuous boundaries; furthermore the reconstruction shows better voxel clustering in tumour regions of interest. A more homogenous intensity distribution is also observed, enabling improved image contrast between tumours and background, especially in places where fatty tissue is imaged. The fidelity of reconstruction is further evaluated on the basis of five new qualitative metrics. Results confirm the superiority of the tensorial approach. The proposed reconstruction metrics should also find future applications in the assessment of other reconstruction algorithms.

摘要

提出了一种基于张量代数的新方法,该方法使用高阶奇异值分解,从使用动态对比增强磁共振成像(DCE-MRI)获得的一系列时间图像中进行三维体素重建。主成分分析(PCA)用于稳健地提取空间和时间图像特征,并同时对数据集进行去噪。将使用模糊C均值(FCM)聚类算法在增强缩放(ES)图像上进行的肿瘤分割与使用所提出的张量框架实现的肿瘤分割进行比较。所提出的算法探索肿瘤中空间和时间特征之间的相关性。多通道重建通过增强去噪和改善强度一致性,实现了更好的乳腺肿瘤识别。重建的肿瘤具有清晰连续的边界;此外,重建在感兴趣的肿瘤区域显示出更好的体素聚类。还观察到更均匀的强度分布,从而改善了肿瘤与背景之间的图像对比度,特别是在对脂肪组织成像的部位。基于五个新的定性指标进一步评估了重建的保真度。结果证实了张量方法的优越性。所提出的重建指标也应在评估其他重建算法中找到未来的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验