Suppr超能文献

相似文献

1
Mediating Passive Tumor Accumulation through Particle Size, Tumor Type, and Location.
Nano Lett. 2017 May 10;17(5):2879-2886. doi: 10.1021/acs.nanolett.7b00021. Epub 2017 Apr 11.
3
Sonoporation enhances liposome accumulation and penetration in tumors with low EPR.
J Control Release. 2016 Jun 10;231:77-85. doi: 10.1016/j.jconrel.2016.02.021. Epub 2016 Feb 12.
4
Impact of surface grafting density of PEG macromolecules on dually fluorescent silica nanoparticles used for the in vivo imaging of subcutaneous tumors.
Biochim Biophys Acta Gen Subj. 2017 Jun;1861(6):1587-1596. doi: 10.1016/j.bbagen.2017.01.036. Epub 2017 Feb 4.
5
High-resolution 3D visualization of nanomedicine distribution in tumors.
Theranostics. 2020 Jan 1;10(2):880-897. doi: 10.7150/thno.37178. eCollection 2020.
7
Effects of tumor microenvironments on targeted delivery of glycol chitosan nanoparticles.
J Control Release. 2017 Dec 10;267:223-231. doi: 10.1016/j.jconrel.2017.09.015. Epub 2017 Sep 14.
8
Tumor accumulation of NIR fluorescent PEG-PLA nanoparticles: impact of particle size and human xenograft tumor model.
ACS Nano. 2011 Nov 22;5(11):8710-20. doi: 10.1021/nn2026353. Epub 2011 Oct 10.
9
Balancing Passive and Active Targeting to Different Tumor Compartments Using Riboflavin-Functionalized Polymeric Nanocarriers.
Nano Lett. 2017 Aug 9;17(8):4665-4674. doi: 10.1021/acs.nanolett.7b01171. Epub 2017 Jul 27.
10
Multistage nanoparticle delivery system for deep penetration into tumor tissue.
Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2426-31. doi: 10.1073/pnas.1018382108. Epub 2011 Jan 18.

引用本文的文献

2
Analyzing Molecular Determinants of Nanodrugs' Cytotoxic Effects.
Int J Mol Sci. 2025 Jul 11;26(14):6687. doi: 10.3390/ijms26146687.
3
Progress and potential of nanobubbles for ultrasound-mediated drug delivery.
Expert Opin Drug Deliv. 2025 Jul;22(7):1007-1030. doi: 10.1080/17425247.2025.2505044. Epub 2025 May 18.
4
Oxygen tension regulating nanoformulation for the improved photodynamic therapy of hypoxic tumors.
Mater Today Bio. 2025 Feb 19;31:101587. doi: 10.1016/j.mtbio.2025.101587. eCollection 2025 Apr.
5
Dynamic-Covalent Mesoporous Silica Nanohybrid with pH/ROS-Responsive Drug Release for Targeted Tumor Therapy.
ACS Omega. 2024 Nov 18;9(48):47428-47435. doi: 10.1021/acsomega.4c04502. eCollection 2024 Dec 3.
7
Beyond aromatherapy: can essential oil loaded nanocarriers revolutionize cancer treatment?
Nanoscale Adv. 2024 Sep 27;6(22):5511-62. doi: 10.1039/d4na00678j.
8
An Insight into Perfusion Anisotropy within Solid Murine Lung Cancer Tumors.
Pharmaceutics. 2024 Jul 30;16(8):1009. doi: 10.3390/pharmaceutics16081009.
9
Histochemistry for Molecular Imaging in Nanomedicine.
Int J Mol Sci. 2024 Jul 24;25(15):8041. doi: 10.3390/ijms25158041.

本文引用的文献

1
Patterns of Vasculature in Mouse Models of Lung Cancer Are Dependent on Location.
Mol Imaging Biol. 2017 Apr;19(2):215-224. doi: 10.1007/s11307-016-1010-5.
2
Cancer nanomedicine: Is targeting our target?
Nat Rev Mater. 2016 Sep;1(9). doi: 10.1038/natrevmats.2016.69. Epub 2016 Sep 7.
3
Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle.
Sci Transl Med. 2015 Nov 18;7(314):314ra183. doi: 10.1126/scitranslmed.aac6522.
6
Tumor-associated macrophages as major players in the tumor microenvironment.
Cancers (Basel). 2014 Aug 13;6(3):1670-90. doi: 10.3390/cancers6031670.
7
Barriers to drug delivery in solid tumors.
Tissue Barriers. 2014 Jul 22;2:e29528. doi: 10.4161/tisb.29528. eCollection 2014.
8
Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency.
ACS Nano. 2014 Jun 24;8(6):5696-706. doi: 10.1021/nn500299p. Epub 2014 May 22.
10
Passive versus active tumor targeting using RGD- and NGR-modified polymeric nanomedicines.
Nano Lett. 2014 Feb 12;14(2):972-81. doi: 10.1021/nl404391r. Epub 2014 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验