Suppr超能文献

鉴定结节性硬化蛋白(TSC2)上控制雷帕霉素机制靶点(mTOR)信号传导的机械调节磷酸化位点。

Identification of mechanically regulated phosphorylation sites on tuberin (TSC2) that control mechanistic target of rapamycin (mTOR) signaling.

作者信息

Jacobs Brittany L, McNally Rachel M, Kim Kook-Joo, Blanco Rocky, Privett Rachel E, You Jae-Sung, Hornberger Troy A

机构信息

From the Department of Comparative Biosciences and.

the School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706.

出版信息

J Biol Chem. 2017 Apr 28;292(17):6987-6997. doi: 10.1074/jbc.M117.777805. Epub 2017 Mar 13.

Abstract

Mechanistic target of rapamycin (mTOR) signaling is necessary to generate a mechanically induced increase in skeletal muscle mass, but the mechanism(s) through which mechanical stimuli regulate mTOR signaling remain poorly defined. Recent studies have suggested that Ras homologue enriched in brain (Rheb), a direct activator of mTOR, and its inhibitor, the GTPase-activating protein tuberin (TSC2), may play a role in this pathway. To address this possibility, we generated inducible and skeletal muscle-specific knock-out mice for Rheb (iRhebKO) and TSC2 (iTSC2KO) and mechanically stimulated muscles from these mice with eccentric contractions (EC). As expected, the knock-out of TSC2 led to an elevation in the basal level of mTOR signaling. Moreover, we found that the magnitude of the EC-induced activation of mTOR signaling was significantly blunted in muscles from both inducible and skeletal muscle-specific knock-out mice for Rheb and iTSC2KO mice. Using mass spectrometry, we identified six sites on TSC2 whose phosphorylation was significantly altered by the EC treatment. Employing a transient transfection-based approach to rescue TSC2 function in muscles of the iTSC2KO mice, we demonstrated that these phosphorylation sites are required for the role that TSC2 plays in the EC-induced activation of mTOR signaling. Importantly, however, these phosphorylation sites were not required for an insulin-induced activation of mTOR signaling. As such, our results not only establish a critical role for Rheb and TSC2 in the mechanical activation of mTOR signaling, but they also expose the existence of a previously unknown branch of signaling events that can regulate the TSC2/mTOR pathway.

摘要

雷帕霉素作用的分子靶点(mTOR)信号传导对于机械诱导的骨骼肌质量增加是必需的,但机械刺激调节mTOR信号传导的机制仍不清楚。最近的研究表明,富含脑的Ras同源物(Rheb)是mTOR的直接激活剂,及其抑制剂GTP酶激活蛋白结节性硬化蛋白2(TSC2)可能在该途径中起作用。为了探究这种可能性,我们构建了Rheb(iRhebKO)和TSC2(iTSC2KO)的诱导型和骨骼肌特异性敲除小鼠,并通过离心收缩(EC)对这些小鼠的肌肉进行机械刺激。正如预期的那样,TSC2的敲除导致mTOR信号传导的基础水平升高。此外,我们发现,在Rheb诱导型和骨骼肌特异性敲除小鼠以及iTSC2KO小鼠的肌肉中,EC诱导的mTOR信号激活幅度均显著减弱。通过质谱分析,我们鉴定出TSC2上的六个位点,其磷酸化在EC处理后发生了显著改变。采用基于瞬时转染的方法在iTSC2KO小鼠的肌肉中挽救TSC2功能,我们证明这些磷酸化位点是TSC2在EC诱导的mTOR信号激活中发挥作用所必需的。然而,重要的是,这些磷酸化位点对于胰岛素诱导的mTOR信号激活并非必需。因此,我们的结果不仅确立了Rheb和TSC2在mTOR信号传导机械激活中的关键作用,还揭示了一个以前未知的信号事件分支的存在,该分支可以调节TSC2/mTOR途径。

相似文献

4
REDD2 is enriched in skeletal muscle and inhibits mTOR signaling in response to leucine and stretch.
Am J Physiol Cell Physiol. 2009 Mar;296(3):C583-92. doi: 10.1152/ajpcell.00464.2008. Epub 2009 Jan 7.
6
Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity.
Mol Cell Biol. 2004 Sep;24(18):7965-75. doi: 10.1128/MCB.24.18.7965-7975.2004.
7
Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling.
Genes Dev. 2003 Aug 1;17(15):1829-34. doi: 10.1101/gad.1110003. Epub 2003 Jul 17.
8
RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells.
Cell Signal. 2014 Mar;26(3):461-7. doi: 10.1016/j.cellsig.2013.11.035. Epub 2013 Dec 3.
10
Regulation of B-Raf kinase activity by tuberin and Rheb is mammalian target of rapamycin (mTOR)-independent.
J Biol Chem. 2004 Jul 16;279(29):29930-7. doi: 10.1074/jbc.M402591200. Epub 2004 May 18.

引用本文的文献

3
Identification of a Resistance Exercise-Specific Signaling Pathway that Drives Skeletal Muscle Growth.
Res Sq. 2024 Nov 12:rs.3.rs-4997138. doi: 10.21203/rs.3.rs-4997138/v1.
4
Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions.
Physiol Rev. 2023 Oct 1;103(4):2679-2757. doi: 10.1152/physrev.00039.2022. Epub 2023 Jun 29.
5
The skeletal muscle fiber periphery: A nexus of mTOR-related anabolism.
Sports Med Health Sci. 2022 Dec 1;5(1):10-19. doi: 10.1016/j.smhs.2022.11.004. eCollection 2023 Mar.
6
microRNAs profiling of small extracellular vesicles from midbrain tissue of Parkinson's disease.
Front Mol Neurosci. 2023 Feb 3;16:1090556. doi: 10.3389/fnmol.2023.1090556. eCollection 2023.
7
8
Roles of mTOR in the Regulation of Pancreatic β-Cell Mass and Insulin Secretion.
Biomolecules. 2022 Apr 21;12(5):614. doi: 10.3390/biom12050614.
9
CORP: Gene delivery into murine skeletal muscle using in vivo electroporation.
J Appl Physiol (1985). 2022 Jul 1;133(1):41-59. doi: 10.1152/japplphysiol.00088.2022. Epub 2022 May 5.

本文引用的文献

1
PP2AC Level Determines Differential Programming of p38-TSC-mTOR Signaling and Therapeutic Response to p38-Targeted Therapy in Colorectal Cancer.
EBioMedicine. 2015 Nov 19;2(12):1944-56. doi: 10.1016/j.ebiom.2015.11.031. eCollection 2015 Dec.
3
KinomeXplorer: an integrated platform for kinome biology studies.
Nat Methods. 2014 Jun;11(6):603-4. doi: 10.1038/nmeth.2968.
4
Muscle mass index as a predictor of longevity in older adults.
Am J Med. 2014 Jun;127(6):547-53. doi: 10.1016/j.amjmed.2014.02.007. Epub 2014 Feb 18.
7
A role for Raptor phosphorylation in the mechanical activation of mTOR signaling.
Cell Signal. 2014 Feb;26(2):313-22. doi: 10.1016/j.cellsig.2013.11.009. Epub 2013 Nov 13.
8
The mechanical activation of mTOR signaling: an emerging role for late endosome/lysosomal targeting.
J Muscle Res Cell Motil. 2014 Feb;35(1):11-21. doi: 10.1007/s10974-013-9367-4. Epub 2013 Oct 29.
9
Talks about TORCs: recent advancesin target of rapamycin signalling. On mTOR nomenclature.
Biochem Soc Trans. 2013 Aug;41(4):887-8. doi: 10.1042/BST20130092.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验