Suppr超能文献

用于无监督学习和模式识别的双势垒忆阻器件

Double-Barrier Memristive Devices for Unsupervised Learning and Pattern Recognition.

作者信息

Hansen Mirko, Zahari Finn, Ziegler Martin, Kohlstedt Hermann

机构信息

Nanoelektronik, Technische Fakultät, Christian-Albrechts-Universität zu Kiel Kiel, Germany.

出版信息

Front Neurosci. 2017 Feb 28;11:91. doi: 10.3389/fnins.2017.00091. eCollection 2017.

Abstract

The use of interface-based resistive switching devices for neuromorphic computing is investigated. In a combined experimental and numerical study, the important device parameters and their impact on a neuromorphic pattern recognition system are studied. The memristive cells consist of a layer sequence Al/AlO/Nb O /Au and are fabricated on a 4-inch wafer. The key functional ingredients of the devices are a 1.3 nm thick AlO tunnel barrier and a 2.5 mm thick Nb O memristive layer. Voltage pulse measurements are used to study the electrical conditions for the emulation of synaptic functionality of single cells for later use in a recognition system. The results are evaluated and modeled in the framework of the plasticity model of Ziegler et al. Based on this model, which is matched to experimental data from 84 individual devices, the network performance with regard to yield, reliability, and variability is investigated numerically. As the network model, a computing scheme for pattern recognition and unsupervised learning based on the work of Querlioz et al. (2011), Sheridan et al. (2014), Zahari et al. (2015) is employed. This is a two-layer feedforward network with a crossbar array of memristive devices, leaky integrate-and-fire output neurons including a winner-takes-all strategy, and a stochastic coding scheme for the input pattern. As input pattern, the full data set of digits from the MNIST database is used. The numerical investigation indicates that the experimentally obtained yield, reliability, and variability of the memristive cells are suitable for such a network. Furthermore, evidence is presented that their strong - non-linearity might avoid the need for selector devices in crossbar array structures.

摘要

研究了基于界面的电阻式开关器件在神经形态计算中的应用。在一项结合实验和数值研究中,研究了重要的器件参数及其对神经形态模式识别系统的影响。忆阻细胞由Al/AlO/Nb₂O₅/Au层序列组成,并在4英寸晶圆上制造。器件的关键功能成分是1.3纳米厚的AlO隧道势垒和2.5毫米厚的Nb₂O₅忆阻层。电压脉冲测量用于研究单个细胞突触功能仿真的电学条件,以便随后在识别系统中使用。结果在齐格勒等人的可塑性模型框架内进行评估和建模。基于与84个单个器件的实验数据匹配的该模型,对网络在产量、可靠性和可变性方面的性能进行了数值研究。作为网络模型,采用了一种基于奎利奥兹等人(2011年)、谢里丹等人(2014年)、扎哈里等人(2015年)工作的模式识别和无监督学习计算方案。这是一个两层前馈网络,具有忆阻器件的交叉阵列、包括胜者全得策略的泄漏积分发放输出神经元以及用于输入模式的随机编码方案。作为输入模式,使用了MNIST数据库中的完整数字数据集。数值研究表明,忆阻细胞实验获得的产量、可靠性和可变性适用于这样的网络。此外,有证据表明它们的强非线性可能避免在交叉阵列结构中使用选择器器件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b9/5328953/d040c1318e70/fnins-11-00091-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验