Suppr超能文献

借助可穿戴技术和大数据分析实现帕金森病研究的突破。

Enabling breakthroughs in Parkinson's disease with wearable technologies and big data analytics.

作者信息

Cohen Shahar, Bataille Lauren R, Martig Adria K

机构信息

Intel Corporation, Azorim Park, Petach Tikva, Israel.

The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA.

出版信息

Mhealth. 2016 May 12;2:20. doi: 10.21037/mhealth.2016.04.02. eCollection 2016.

Abstract

Parkinson's disease (PD) is a progressive, degenerative disorder of the central nervous system that is diagnosed and measured clinically by the Unified Parkinson's Disease Rating Scale (UPDRS). Tools for continuous and objective monitoring of PD motor symptoms are needed to complement clinical assessments of symptom severity to further inform PD therapeutic development across several arenas, from developing more robust clinical trial outcome measures to establishing biomarkers of disease progression. The Michael J. Fox Foundation for Parkinson's Disease Research and Intel Corporation have joined forces to develop a mobile application and an Internet of Things (IoT) platform to support large-scale studies of objective, continuously sampled sensory data from people with PD. This platform provides both population and per-patient analyses, measuring gait, activity level, nighttime activity, tremor, as well as other structured assessments and tasks. All data collected will be available to researchers on an open-source platform. Development of the IoT platform raised a number of engineering considerations, including wearable sensor choice, data management and curation, and algorithm validation. This project has successfully demonstrated proof of concept that IoT platforms, wearable technologies and the data they generate offer exciting possibilities for more robust, reliable, and low-cost research methodologies and patient care strategies.

摘要

帕金森病(PD)是一种中枢神经系统的进行性退行性疾病,临床上通过统一帕金森病评定量表(UPDRS)进行诊断和评估。需要用于持续、客观监测帕金森病运动症状的工具,以补充对症状严重程度的临床评估,从而在多个领域为帕金森病治疗的发展提供更多信息,从制定更可靠的临床试验结果测量方法到确定疾病进展的生物标志物。迈克尔·J·福克斯帕金森病研究基金会与英特尔公司联手开发了一款移动应用程序和一个物联网(IoT)平台,以支持对帕金森病患者的客观、连续采样的感官数据进行大规模研究。该平台提供总体分析和个体患者分析,可测量步态、活动水平、夜间活动、震颤以及其他结构化评估和任务。收集到的所有数据将在一个开源平台上提供给研究人员。物联网平台的开发引发了一些工程方面的考虑,包括可穿戴传感器的选择、数据管理与整理以及算法验证。该项目已成功证明了概念验证,即物联网平台、可穿戴技术及其生成的数据为更强大、可靠且低成本的研究方法和患者护理策略提供了令人兴奋的可能性。

相似文献

1
Enabling breakthroughs in Parkinson's disease with wearable technologies and big data analytics.
Mhealth. 2016 May 12;2:20. doi: 10.21037/mhealth.2016.04.02. eCollection 2016.
3
mHealth and wearable technology should replace motor diaries to track motor fluctuations in Parkinson's disease.
NPJ Digit Med. 2020 Jan 17;3:6. doi: 10.1038/s41746-019-0214-x. eCollection 2020.
4
Wearable sensor use for assessing standing balance and walking stability in people with Parkinson's disease: a systematic review.
PLoS One. 2015 Apr 20;10(4):e0123705. doi: 10.1371/journal.pone.0123705. eCollection 2015.
6
Technologies for Assessment of Motor Disorders in Parkinson's Disease: A Review.
Sensors (Basel). 2015 Aug 31;15(9):21710-45. doi: 10.3390/s150921710.
7
A mobile cloud-based Parkinson's disease assessment system for home-based monitoring.
JMIR Mhealth Uhealth. 2015 Mar 26;3(1):e29. doi: 10.2196/mhealth.3956.
8
An Emerging Era in the Management of Parkinson's Disease: Wearable Technologies and the Internet of Things.
IEEE J Biomed Health Inform. 2015 Nov;19(6):1873-81. doi: 10.1109/JBHI.2015.2461555. Epub 2015 Jul 28.
9

引用本文的文献

1
Modernizing the Staging of Parkinson Disease Using Digital Health Technology.
J Med Internet Res. 2025 Apr 4;27:e63105. doi: 10.2196/63105.
3
Approaches of wearable and implantable biosensor towards of developing in precision medicine.
Front Med (Lausanne). 2024 Jul 18;11:1390634. doi: 10.3389/fmed.2024.1390634. eCollection 2024.
5
The evolution of Big Data in neuroscience and neurology.
J Big Data. 2023;10(1):116. doi: 10.1186/s40537-023-00751-2. Epub 2023 Jul 10.
6
Accuracy and precision of wrist-worn actigraphy for measuring steps taken during over-ground and treadmill walking in adults with Parkinson's disease.
Parkinsonism Relat Disord. 2021 Jul;88:102-107. doi: 10.1016/j.parkreldis.2021.06.009. Epub 2021 Jun 18.
9
Feasibility and utility of a clinician dashboard from wearable and mobile application Parkinson's disease data.
NPJ Digit Med. 2019 Sep 25;2:95. doi: 10.1038/s41746-019-0169-y. eCollection 2019.
10
Characterizing patient compliance over six months in remote digital trials of Parkinson's and Huntington disease.
BMC Med Inform Decis Mak. 2018 Dec 20;18(1):138. doi: 10.1186/s12911-018-0714-7.

本文引用的文献

1
Monitoring motor fluctuations in patients with Parkinson's disease using wearable sensors.
IEEE Trans Inf Technol Biomed. 2009 Nov;13(6):864-73. doi: 10.1109/TITB.2009.2033471. Epub 2009 Oct 20.
3
Parkinson's disease: clinical features and diagnosis.
J Neurol Neurosurg Psychiatry. 2008 Apr;79(4):368-76. doi: 10.1136/jnnp.2007.131045.
4
Ambulatory monitoring of freezing of gait in Parkinson's disease.
J Neurosci Methods. 2008 Jan 30;167(2):340-8. doi: 10.1016/j.jneumeth.2007.08.023. Epub 2007 Sep 2.
5
Quantitative gait analysis in Parkinson's disease: comparison with a healthy control group.
Arch Phys Med Rehabil. 2005 May;86(5):1007-13. doi: 10.1016/j.apmr.2004.08.012.
6
Gait assessment in Parkinson's disease: toward an ambulatory system for long-term monitoring.
IEEE Trans Biomed Eng. 2004 Aug;51(8):1434-43. doi: 10.1109/TBME.2004.827933.
7
Sleep disorder related to Parkinson's disease.
J Neurol. 1997 Apr;244(4 Suppl 1):S3-6. doi: 10.1007/BF03160564.
8
Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases.
J Neurol Neurosurg Psychiatry. 1992 Mar;55(3):181-4. doi: 10.1136/jnnp.55.3.181.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验