Suppr超能文献

将层次结构纳入估计和预测包拟合,并以估计国家以下层面的艾滋病毒/艾滋病动态为例。

Incorporation of hierarchical structure into estimation and projection package fitting with examples of estimating subnational HIV/AIDS dynamics.

作者信息

Niu Xiaoyue, Zhang Amy, Brown Tim, Puckett Robert, Mahy Mary, Bao Le

机构信息

aDepartment of Statistics, Pennsylvania State University, University Park, Pennsylvania bEast-West Center, Honolulu, Hawaii, USA cStrategic Information and Evaluation Department, UNAIDS, Geneva, Switzerland.

出版信息

AIDS. 2017 Apr;31 Suppl 1(Suppl 1):S51-S59. doi: 10.1097/QAD.0000000000001426.

Abstract

OBJECTIVES

The article aims to give Spectrum/estimation and projection package (EPP) users and the scientific community a basic understanding of the underlying statistical model used to incorporate hierarchical structure in HIV subnational estimation, and to show how it has been implemented in the Spectrum/EPP interface for improving subepidemic estimation. The article also provides recommended default settings for this new model.

METHODS

We apply a generalized linear mixed-effects model on antenatal clinics prevalence data to get area-specific prevalence and uncertainty estimates, and transform those estimates to auxiliary data. We then fit the EPP model to both the observed data and auxiliary data.

RESULTS

We apply the proposed methods to four countries with different levels of data availability. We compare the out-of-sample prediction accuracy of the proposed method with varying auxiliary sample sizes and EPP without auxiliary data.

CONCLUSION

We find that borrowing information from data-rich areas to data-sparse areas using our proposed method improves EPP fit in data-sparse areas. We recommend using the sample size estimated from generalized linear mixed-effects model as the default auxiliary sample size.

摘要

目标

本文旨在让Spectrum/估计与预测软件包(EPP)的用户以及科学界对用于在艾滋病毒次国家级估计中纳入分层结构的基础统计模型有基本的了解,并展示该模型在Spectrum/EPP界面中是如何实现以改进亚流行估计的。本文还提供了针对这个新模型的推荐默认设置。

方法

我们对产前诊所患病率数据应用广义线性混合效应模型,以获得特定地区的患病率和不确定性估计,并将这些估计转换为辅助数据。然后,我们将EPP模型应用于观测数据和辅助数据。

结果

我们将所提出的方法应用于四个数据可得性水平不同的国家。我们比较了所提出方法在不同辅助样本量下以及无辅助数据的EPP的样本外预测准确性。

结论

我们发现,使用我们提出的方法从数据丰富地区向数据稀疏地区借用信息,可改善数据稀疏地区的EPP拟合。我们建议将从广义线性混合效应模型估计的样本量作为默认辅助样本量。

相似文献

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验