Suppr超能文献

化学界面阻尼取决于电子到达表面。

Chemical Interface Damping Depends on Electrons Reaching the Surface.

机构信息

Graduate School for Excellence Materials Science in Mainz, Johannes Gutenberg University Mainz , Staudinger Weg 9, D-55128 Mainz, Germany.

Institute of Physical Chemistry, Johannes Gutenberg University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.

出版信息

ACS Nano. 2017 Mar 28;11(3):2886-2893. doi: 10.1021/acsnano.6b08010. Epub 2017 Mar 17.

Abstract

Metallic nanoparticles show extraordinary strong light absorption near their plasmon resonance, orders of magnitude larger compared to nonmetallic nanoparticles. This "antenna" effect has recently been exploited to transfer electrons into empty states of an attached material, for example to create electric currents in photovoltaic devices or to induce chemical reactions. It is generally assumed that plasmons decay into hot electrons, which then transfer to the attached material. Ultrafast electron-electron scattering reduces the lifetime of hot electrons drastically in metals and therefore strongly limits the efficiency of plasmon induced hot electron transfer. However, recent work has revived the concept of plasmons decaying directly into an interfacial charge transfer state, thus avoiding the intermediate creation of hot electrons. This direct decay mechanism has mostly been neglected, and has been termed chemical interface damping (CID). CID manifests itself as an additional damping contribution to the homogeneous plasmon line width. In this study, we investigate the size dependence of CID by following the plasmon line width of gold nanorods during the adsorption process of thiols on the gold surface with single particle spectroscopy. We show that CID scales inversely with the effective path length of electrons, i.e., the average distance of electrons to the surface. Moreover, we compare the contribution of CID to other competing plasmon decay channels and predict that CID becomes the dominating plasmon energy decay mechanism for very small gold nanorods.

摘要

金属纳米粒子在其等离子体共振附近表现出非凡的强光吸收,与非金属纳米粒子相比,其吸收强度要大几个数量级。这种“天线”效应最近被用于将电子转移到附着材料的空态,例如在光伏器件中产生电流或诱导化学反应。通常认为等离子体衰减成热电子,然后热电子转移到附着的材料上。在金属中,超快的电子-电子散射会大大缩短热电子的寿命,从而强烈限制了等离子体诱导热电子转移的效率。然而,最近的工作重新提出了等离子体直接衰减成界面电荷转移态的概念,从而避免了热电子的中间产生。这种直接衰减机制在很大程度上被忽视了,并被称为化学界面阻尼(CID)。CID 表现为对均匀等离子体线宽的附加阻尼贡献。在这项研究中,我们通过在金表面上吸附硫醇的过程中用单粒子光谱法跟踪金纳米棒的等离子体线宽,研究了 CID 的尺寸依赖性。我们表明,CID 与电子的有效路径长度成反比,即电子到表面的平均距离。此外,我们比较了 CID 对其他竞争等离子体衰减通道的贡献,并预测对于非常小的金纳米棒,CID 将成为主导的等离子体能量衰减机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验