Suppr超能文献

磁共振灌注加权成像在高级别胶质瘤与原发性中枢神经系统淋巴瘤鉴别诊断中的应用:一项系统评价和荟萃分析

The performance of MR perfusion-weighted imaging for the differentiation of high-grade glioma from primary central nervous system lymphoma: A systematic review and meta-analysis.

作者信息

Xu Weilin, Wang Qun, Shao Anwen, Xu Bainan, Zhang Jianmin

机构信息

Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.

Department of Neurosurgery, Chinese PLA General Hospital, Haidian District, Beijing, China.

出版信息

PLoS One. 2017 Mar 16;12(3):e0173430. doi: 10.1371/journal.pone.0173430. eCollection 2017.

Abstract

It is always a great challenge to distinguish high-grade glioma (HGG) from primary central nervous system lymphoma (PCNSL). We conducted a meta-analysis to assess the performance of MR perfusion-weighted imaging (PWI) in differentiating HGG from PCNSL. The heterogeneity and threshold effect were evaluated, and the sensitivity (SEN), specificity (SPE) and areas under summary receiver operating characteristic curve (SROC) were calculated. Fourteen studies with a total of 598 participants were included in this meta-analysis. The results indicated that PWI had a high level of accuracy (area under the curve (AUC) = 0.9415) for differentiating HGG from PCNSL by using the best parameter from each study. The dynamic susceptibility-contrast (DSC) technique might be an optimal index for distinguishing HGGs from PCNSLs (AUC = 0.9812). Furthermore, the DSC had the best sensitivity 0.963 (95%CI: 0.924, 0.986), whereas the arterial spin-labeling (ASL) displayed the best specificity 0.896 (95% CI: 0.781, 0.963) among those techniques. However, the variability of the optimal thresholds from the included studies suggests that further evaluation and standardization are needed before the techniques can be extensively clinically used.

摘要

区分高级别胶质瘤(HGG)与原发性中枢神经系统淋巴瘤(PCNSL)一直是一项巨大挑战。我们进行了一项荟萃分析,以评估磁共振灌注加权成像(PWI)在鉴别HGG与PCNSL方面的性能。评估了异质性和阈值效应,并计算了敏感性(SEN)、特异性(SPE)和汇总接受者操作特征曲线(SROC)下的面积。本荟萃分析纳入了14项研究,共598名参与者。结果表明,通过使用每项研究的最佳参数,PWI在区分HGG与PCNSL方面具有较高的准确性(曲线下面积(AUC)=0.9415)。动态磁敏感对比(DSC)技术可能是区分HGG与PCNSL的最佳指标(AUC=0.9812)。此外,在这些技术中,DSC的敏感性最佳,为0.963(95%CI:0.924,0.986),而动脉自旋标记(ASL)的特异性最佳,为0.896(95%CI:0.781,0.963)。然而,纳入研究中最佳阈值的变异性表明,在这些技术能够广泛应用于临床之前,还需要进一步评估和标准化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c255/5354292/5fc5c8245760/pone.0173430.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验