Suppr超能文献

高纯度低表达重组阳离子生物聚合物的生产。

Production of low-expressing recombinant cationic biopolymers with high purity.

作者信息

Chen Xuguang, Nomani Alireza, Patel Niket, Hatefi Arash

机构信息

Department of Pharmaceutics, Rutgers University, Piscataway, NJ 08854, United States.

Department of Pharmaceutics, Rutgers University, Piscataway, NJ 08854, United States.

出版信息

Protein Expr Purif. 2017 Jun;134:11-17. doi: 10.1016/j.pep.2017.03.012. Epub 2017 Mar 16.

Abstract

The growing complexity of recombinant biopolymers for delivery of bioactive agents requires the ability to control the biomaterial structure with high degree of precision. Genetic engineering techniques have provided this opportunity to synthesize biomaterials in an organism such as E. coli with full control over their lengths and sequences. One class of such biopolymers is recombinant cationic biopolymers with applications in gene delivery, regenerative medicine and variety of other biomedical applications. Unfortunately, due to their highly cationic nature and complex structure, their production in E. coli expression system is marred by low expression yield which in turn complicates the possibility of obtaining pure biopolymer. SlyD and ArnA endogenous E. coli proteins are considered the major culprits that copurify with the low-expressing biopolymers during the metal affinity chromatography. Here, we compared the impact of different parameters such as the choice of expression hosts as well as metal affinity columns in order to identify the most effective approach in obtaining highly pure recombinant cationic biopolymers with acceptable yield. The results of this study showed that by using E. coli BL21(DE3) LOBSTR strain and in combination with our developed stringent expression and Ni-NTA purification protocols highly pure products in one purification step (>99% purity) can be obtained. This approach could be applied to the production of other complex and potentially toxic biopolymers with wide range of applications in biomedicine.

摘要

用于递送生物活性剂的重组生物聚合物日益复杂,这就需要具备以高精度控制生物材料结构的能力。基因工程技术提供了这样一个机会,即在诸如大肠杆菌等生物体中合成生物材料,并能完全控制其长度和序列。这类生物聚合物中的一类是重组阳离子生物聚合物,可应用于基因递送、再生医学及各种其他生物医学应用中。不幸的是,由于其高度阳离子化的性质和复杂的结构,它们在大肠杆菌表达系统中的产量很低,这反过来又使获得纯生物聚合物的可能性变得复杂。SlyD和ArnA这两种大肠杆菌内源性蛋白质被认为是在金属亲和层析过程中与低表达生物聚合物共纯化的主要罪魁祸首。在这里,我们比较了不同参数的影响,如表达宿主的选择以及金属亲和柱,以便确定获得具有可接受产量的高纯度重组阳离子生物聚合物的最有效方法。这项研究的结果表明,通过使用大肠杆菌BL21(DE3) LOBSTR菌株,并结合我们开发的严格表达和Ni-NTA纯化方案,可以在一个纯化步骤中获得高纯度产品(纯度>99%)。这种方法可应用于生产其他复杂且可能有毒的生物聚合物,在生物医学中有广泛的应用。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验