Suppr超能文献

片上血管化的进展。

Advances in on-chip vascularization.

作者信息

Haase Kristina, Kamm Roger D

机构信息

Department of Mechanical Engineering, MIT, Cambridge, MA, USA.

Department of Biological Engineering, MIT, Cambridge, MA, USA.

出版信息

Regen Med. 2017 Apr;12(3):285-302. doi: 10.2217/rme-2016-0152. Epub 2017 Mar 20.

Abstract

Microfluidics is invaluable for studying microvasculature, development of organ-on-chip models and engineering microtissues. Microfluidic design can cleverly control geometry, biochemical gradients and mechanical stimuli, such as shear and interstitial flow, to more closely mimic in vivo conditions. In vitro vascular networks are generated by two distinct approaches: via endothelial-lined patterned channels, or by self-assembled networks. Each system has its own benefits and is amenable to the study of angiogenesis, vasculogenesis and cancer metastasis. Various techniques are employed in order to generate rapid perfusion of these networks within a variety of tissue and organ-mimicking models, some of which have shown recent success following implantation in vivo. Combined with tuneable hydrogels, microfluidics holds great promise for drug screening as well as in the development of prevascularized tissues for regenerative medicine.

摘要

微流控技术对于研究微脉管系统、芯片器官模型的开发以及工程化微组织而言具有极高价值。微流控设计能够巧妙地控制几何形状、生化梯度以及机械刺激,例如剪切力和间质流,从而更紧密地模拟体内环境。体外血管网络可通过两种不同方法生成:经由内皮细胞衬里的图案化通道,或者通过自组装网络。每个系统都有其自身的优势,适用于血管生成、血管发生以及癌症转移的研究。为了在各种组织和器官模拟模型中实现这些网络的快速灌注,人们采用了多种技术,其中一些技术在体内植入后已取得了近期成功。与可调节水凝胶相结合,微流控技术在药物筛选以及再生医学预血管化组织的开发方面极具前景。

相似文献

1
Advances in on-chip vascularization.
Regen Med. 2017 Apr;12(3):285-302. doi: 10.2217/rme-2016-0152. Epub 2017 Mar 20.
3
Tissue-engineered microenvironment systems for modeling human vasculature.
Exp Biol Med (Maywood). 2014 Sep;239(9):1264-71. doi: 10.1177/1535370214539228. Epub 2014 Jul 16.
4
Fabrication and Operation of Microfluidic Hanging-Drop Networks.
Methods Mol Biol. 2018;1771:183-202. doi: 10.1007/978-1-4939-7792-5_15.
5
Microfluidic techniques for development of 3D vascularized tissue.
Biomaterials. 2014 Aug;35(26):7308-25. doi: 10.1016/j.biomaterials.2014.04.091. Epub 2014 Jun 3.
6
Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms.
ACS Appl Mater Interfaces. 2021 Mar 31;13(12):13920-13933. doi: 10.1021/acsami.0c21573. Epub 2021 Mar 19.
8
Microfluidic Model to Mimic Initial Event of Neovascularization.
J Vis Exp. 2021 Apr 10(170). doi: 10.3791/62003.
9
Utility of microfluidic devices to study the platelet-endothelium interface.
Platelets. 2017 Jul;28(5):449-456. doi: 10.1080/09537104.2017.1280600. Epub 2017 Mar 30.
10
Hydrogels to model 3D in vitro microenvironment of tumor vascularization.
Adv Drug Deliv Rev. 2014 Dec 15;79-80:19-29. doi: 10.1016/j.addr.2014.06.002. Epub 2014 Jun 23.

引用本文的文献

3
Engineering in vitro vascular microsystems.
Microsyst Nanoeng. 2025 May 22;11(1):100. doi: 10.1038/s41378-025-00956-w.
4
Advances in the Model Structure of In Vitro Vascularized Organ-on-a-Chip.
Cyborg Bionic Syst. 2024 Apr 25;5:0107. doi: 10.34133/cbsystems.0107. eCollection 2024.
7
Vascularization of human islets by adaptable endothelium for durable and functional subcutaneous engraftment.
Sci Adv. 2025 Jan 31;11(5):eadq5302. doi: 10.1126/sciadv.adq5302. Epub 2025 Jan 29.
8
Bioengineered human arterial equivalent and its applications from vascular graft to disease modeling.
iScience. 2024 Oct 19;27(11):111215. doi: 10.1016/j.isci.2024.111215. eCollection 2024 Nov 15.
9
Assessing the metastatic potential of circulating tumor cells using an organ-on-chip model.
Front Bioeng Biotechnol. 2024 Oct 8;12:1457884. doi: 10.3389/fbioe.2024.1457884. eCollection 2024.
10
Personalized PDAC chip with functional endothelial barrier for tumour biomarker detection: A platform for precision medicine applications.
Mater Today Bio. 2024 Sep 21;29:101262. doi: 10.1016/j.mtbio.2024.101262. eCollection 2024 Dec.

本文引用的文献

1
3D microtumors in vitro supported by perfused vascular networks.
Sci Rep. 2016 Aug 23;6:31589. doi: 10.1038/srep31589.
2
Towards the characterisation of carotid plaque tissue toughness: Linking mechanical properties to plaque composition.
Acta Biomater. 2016 Oct 1;43:88-100. doi: 10.1016/j.actbio.2016.07.042. Epub 2016 Jul 27.
3
In Situ Patterning of Microfluidic Networks in 3D Cell-Laden Hydrogels.
Adv Mater. 2016 Sep;28(34):7450-6. doi: 10.1002/adma.201601099. Epub 2016 Jun 23.
4
Fabrication of 3D Biomimetic Microfluidic Networks in Hydrogels.
Adv Healthc Mater. 2016 Sep;5(17):2153-60. doi: 10.1002/adhm.201600351. Epub 2016 May 30.
5
3D-printed fluidic networks as vasculature for engineered tissue.
Lab Chip. 2016 May 24;16(11):2025-43. doi: 10.1039/c6lc00193a.
6
Morphogenesis of 3D vascular networks is regulated by tensile forces.
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3215-20. doi: 10.1073/pnas.1522273113. Epub 2016 Mar 7.
8
Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip.
PLoS One. 2016 Mar 1;11(3):e0150360. doi: 10.1371/journal.pone.0150360. eCollection 2016.
10
Fabrication of biomimetic vascular scaffolds for 3D tissue constructs using vascular corrosion casts.
Acta Biomater. 2016 Mar 1;32:190-197. doi: 10.1016/j.actbio.2016.01.005. Epub 2016 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验