Suppr超能文献

差异表达 miRNA 的个体化分析及其在共同失调 miRNA 鉴定中的应用。

Individualized analysis of differentially expressed miRNAs with application to the identification of miRNAs deregulated commonly in lung cancer tissues.

机构信息

Department of Bioinformatics, Fujian Medical University, China.

Department of Preventive Medicine, Gannan Medical University, China.

出版信息

Brief Bioinform. 2018 Sep 28;19(5):793-802. doi: 10.1093/bib/bbx015.

Abstract

Identifying differentially expressed microRNAs (DE miRNAs) between cancer samples and normal controls is a common way to investigate carcinogenesis mechanisms. However, for a DE miRNA detected at the population-level, we do not know whether it is DE in a particular cancer sample. Here, based on the finding that the within-sample relative expression orderings of miRNA pairs are highly stable in a particular type of normal tissues but widely disrupted in the corresponding cancer tissues, we proposed a method, called RankMiRNA, to identify DE miRNAs in each cancer tissue compared with its own normal state. Evaluated with pair-matched miRNA expression profiles of cancer tissues and adjacent normal tissues for lung and liver cancers, RankMiRNA exhibited excellent performance. Finally, we exemplified an application of the individual-level differential expression analysis by finding miRNAs DE in at least 90% lung cancer tissues, defined as common DE miRNAs of lung cancer. After identifying DE miRNAs for each of 991 lung cancer samples from The Cancer Genome Atlas with RankMiRNA, we found that hsa-mir-210 was upregulated, while hsa-mir-490 and hsa-mir-486 were downregulated in > 90% of the 991 lung cancer samples. These common DE miRNAs were validated in independent pair-matched samples of cancer tissues and adjacent normal tissues measured with different platforms. In conclusion, RankMiRNA provides us a novel tool to find common and subtype-specific miRNAs for a type of cancer, allowing us to study cancer mechanisms in a novel way.

摘要

鉴定癌症样本和正常对照之间差异表达的 microRNAs(DE miRNAs)是研究致癌机制的常用方法。然而,对于在群体水平上检测到的 DE miRNA,我们并不知道它是否在特定的癌症样本中存在差异表达。在这里,基于 miRNA 对在特定类型的正常组织中样本内相对表达顺序高度稳定但在相应的癌症组织中广泛破坏的发现,我们提出了一种名为 RankMiRNA 的方法,用于鉴定与自身正常状态相比每个癌症组织中的 DE miRNAs。通过评估肺癌和肝癌的配对 miRNA 表达谱,RankMiRNA 表现出优异的性能。最后,我们通过发现至少 90%的肺癌组织中存在 DE miRNAs 的应用实例,定义为肺癌的常见 DE miRNAs,展示了个体水平差异表达分析的应用。使用 RankMiRNA 对来自癌症基因组图谱的 991 个肺癌样本进行鉴定后,我们发现 hsa-mir-210 在超过 90%的 991 个肺癌样本中上调,而 hsa-mir-490 和 hsa-mir-486 下调。这些常见的 DE miRNAs 在使用不同平台测量的独立配对的癌症组织和相邻正常组织样本中得到了验证。总之,RankMiRNA 为我们提供了一种新的工具,用于寻找一种癌症的常见和亚型特异性 miRNAs,使我们能够以新的方式研究癌症机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验