NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital &Institute of Clinical Medicine, University of Oslo, Norway.
Department of Medicine, Diakonhjemmet hospital, Oslo, Norway.
Sci Rep. 2017 Mar 24;7:45131. doi: 10.1038/srep45131.
Recent efforts using diffusion tensor imaging (DTI) have documented white matter (WM) alterations in Alzheimer's disease (AD). The full potential of whole-brain DTI, however, has not been fully exploited as studies have focused on individual microstructural indices independently. In patients with AD (n = 79), mild (MCI, n = 55) and subjective (SCI, n = 30) cognitive impairment, we applied linked independent component analysis (LICA) to model inter-subject variability across five complementary DTI measures (fractional anisotropy (FA), axial/radial/mean diffusivity, diffusion tensor mode), two crossing fiber measures estimated using a multi-compartment crossing-fiber model reflecting the volume fraction of the dominant (f1) and non-dominant (f2) diffusion orientation, and finally, connectivity density obtained from full-brain probabilistic tractography. The LICA component explaining the largest data variance was highly sensitive to disease severity (AD < MCI < SCI) and revealed widespread coordinated decreases in FA and f1 with increases in all diffusivity measures in AD. Additionally, it reflected regional coordinated decreases and increases in f2, mode and connectivity density, implicating bidirectional alterations of crossing fibers in the fornix, uncinate fasciculi, corpus callosum and major sensorimotor pathways. LICA yielded improved diagnostic classification performance compared to univariate region-of-interest features. Our results document coordinated WM microstructural and connectivity alterations in line with disease severity across the AD continuum.
最近的扩散张量成像 (DTI) 研究记录了阿尔茨海默病 (AD) 患者的白质 (WM) 改变。然而,由于研究主要集中在独立的微观结构指标上,因此尚未充分发挥全脑 DTI 的全部潜力。在 AD 患者(n=79)、轻度认知障碍(MCI,n=55)和主观认知障碍(SCI,n=30)患者中,我们应用链接独立成分分析(LICA)来对五个互补 DTI 指标(分数各向异性(FA)、轴向/径向/平均弥散度、弥散张量模式)、使用多隔室交叉纤维模型估计的两个交叉纤维指标(反映主导(f1)和非主导(f2)弥散方向的体积分数)以及来自全脑概率追踪的连通密度的跨个体变异性进行建模。解释最大数据方差的 LICA 分量对疾病严重程度(AD<MCI<SCI)非常敏感,并揭示了 FA 和 f1 的广泛协调下降,以及 AD 中所有弥散度指标的增加。此外,它反映了 f2、模式和连通密度的区域协调下降和增加,提示穹窿、钩束、胼胝体和主要感觉运动通路中的交叉纤维存在双向改变。与单变量感兴趣区域特征相比,LICA 提高了诊断分类性能。我们的研究结果记录了 AD 连续体中与疾病严重程度相一致的协调 WM 微观结构和连通性改变。