Chen Yingxuan, Yin Fang-Fang, Jiang Zhuoran, Ren Lei
Medical Physics Graduate Program, Duke University, 2424 Erwin Road Suite 101, Durham, NC 27705, United States of America.
Department of Radiation Oncology, Duke University Medical Center, DUMC Box 3295, Durham, North Carolina, 27710, United States of America.
Biomed Phys Eng Express. 2019 Oct;5(6). doi: 10.1088/2057-1976/ab446b. Epub 2019 Oct 7.
Previously we developed a PCTV method to enhance the edge sharpness for low-dose CBCT reconstruction. However, the iterative deformable registration method used for deforming edges from planning-CT to on-board CBCT is time-consuming and user-dependent. This study aims to automate and accelerate PCTV reconstruction by developing an unsupervised CNN model to bypass the conventional deformable registration.
The new method uses unsupervised CNN model for deformation prediction and PCTV reconstruction. An unsupervised CNN model with a u-net structure was used to predict deformation vector fields (DVF) to generate on-board contours for PCTV reconstruction. Paired 3D image volumes of prior CT and on-board CBCT are inputs and DVF are predicted without the need of ground truths. The model was initially trained on brain MRI images, and then fine-tuned using our lung SBRT data. This method was evaluated using lung SBRT patient data. In the intra-patient study, the first -1 day's CBCTs are used for CNN training to predict nth day edge information ( = 2, 3, 4, 5). 45 half-fan projections covering 360˚ from nth day CBCT is used for reconstruction. In the inter-patient study, the 10 patient images including CT and first day's CBCT are used for training. Results from Edge-preserving (EPTV), PCTV and PCTV-CNN are compared.
The cross-correlations of the predicted edge map and the ground truth were on average 0.88 for both intra-patient and inter-patient studies. PCTV-CNN achieved comparable image quality as PCTV while automating the registration process and reducing the registration time from 1-2 min to 1.4 s.
It is feasible to use an unsupervised CNN to predict daily deformation of on-board edge information for PCTV based low-dose CBCT reconstruction. PCTV-CNN has a great potential for enhancing the edge sharpness with high efficiency for low-dose CBCT to improve the precision of on-board target localization and adaptive radiotherapy.
此前我们开发了一种平板计算机断层扫描容积(PCTV)方法来提高低剂量锥形束计算机断层扫描(CBCT)重建的边缘清晰度。然而,用于将计划CT的边缘变形到机载CBCT的迭代可变形配准方法既耗时又依赖用户。本研究旨在通过开发一种无监督卷积神经网络(CNN)模型来绕过传统的可变形配准,从而实现PCTV重建的自动化并加速其过程。
新方法使用无监督CNN模型进行变形预测和PCTV重建。采用具有U型网络结构的无监督CNN模型来预测变形矢量场(DVF),以生成用于PCTV重建的机载轮廓。将先前CT和机载CBCT的配对三维图像体积作为输入,无需真实数据即可预测DVF。该模型最初在脑部磁共振成像(MRI)图像上进行训练,然后使用我们的肺部立体定向体部放疗(SBRT)数据进行微调。使用肺部SBRT患者数据对该方法进行评估。在患者内研究中,使用第一天前一天的CBCT进行CNN训练,以预测第n天(n = 2、3、4、5)的边缘信息。使用第n天CBCT的覆盖360°的45个半扇形投影进行重建。在患者间研究中,使用包括CT和第一天CBCT的10例患者图像进行训练,并比较了保边(EPTV)、PCTV和PCTV-CNN的结果。
在患者内和患者间研究中,预测边缘图与真实情况的互相关性平均均为0.88。PCTV-CNN在实现配准过程自动化并将配准时间从1 - 2分钟减少到1.4秒的同时,获得了与PCTV相当的图像质量。
使用无监督CNN预测基于PCTV的低剂量CBCT重建的机载边缘信息的每日变形是可行的。PCTV-CNN在高效提高低剂量CBCT边缘清晰度以改善机载靶区定位和自适应放疗精度方面具有巨大潜力。