Suppr超能文献

异养型Fe(II)氧化和产铁载体深海细菌VS-10对海底玄武岩玻璃的定殖:玄武岩在促进生长中的潜在作用

Submarine Basaltic Glass Colonization by the Heterotrophic Fe(II)-Oxidizing and Siderophore-Producing Deep-Sea Bacterium VS-10: The Potential Role of Basalt in Enhancing Growth.

作者信息

Sudek Lisa A, Wanger Greg, Templeton Alexis S, Staudigel Hubert, Tebo Bradley M

机构信息

Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla CA, USA.

Jet Propulsion Laboratory, California Institute of Technology, University of Southern California, Pasadena CA, USA.

出版信息

Front Microbiol. 2017 Mar 10;8:363. doi: 10.3389/fmicb.2017.00363. eCollection 2017.

Abstract

Phylogenetically and metabolically diverse bacterial communities have been found in association with submarine basaltic glass surfaces. The driving forces behind basalt colonization are for the most part unknown. It remains ambiguous if basalt provides ecological advantages beyond representing a substrate for surface colonization, such as supplying nutrients and/or energy. VS-10, a metabolically versatile bacterium isolated from Vailulu'u Seamount, was used as a model organism to investigate the physiological responses observed when biofilms are established on basaltic glasses. In Fe-limited heterotrophic media, VS-10 exhibited elevated growth in the presence of basaltic glass. Diffusion chamber experiments demonstrated that physical attachment or contact of soluble metabolites such as siderophores with the basaltic glass plays a pivotal role in this process. Electrochemical data indicated that VS-10 is able to use solid substrates (electrodes) as terminal electron donors and acceptors. Siderophore production and heterotrophic Fe(II) oxidation are discussed as potential mechanisms enhancing growth of VS-10 on glass surfaces. In correlation with that we discuss the possibility that metabolic versatility could represent a common and beneficial physiological trait in marine microbial communities being subject to oligotrophic and rapidly changing deep-sea conditions.

摘要

在与海底玄武岩玻璃表面相关的环境中,已发现系统发育和代谢多样的细菌群落。玄武岩定殖背后的驱动力在很大程度上尚不清楚。玄武岩除了作为表面定殖的基质外,是否还提供了诸如供应营养物质和/或能量等生态优势,目前仍不明确。VS - 10是一种从瓦伊卢卢乌海山分离出的代谢多功能细菌,被用作模式生物,以研究在玄武岩玻璃上形成生物膜时所观察到的生理反应。在铁限制的异养培养基中,VS - 10在玄武岩玻璃存在的情况下生长有所增加。扩散室实验表明,诸如铁载体等可溶性代谢物与玄武岩玻璃的物理附着或接触在这一过程中起关键作用。电化学数据表明,VS - 10能够将固体底物(电极)用作末端电子供体和受体。讨论了铁载体的产生和异养铁(II)氧化作为增强VS - 10在玻璃表面生长的潜在机制。与此相关,我们讨论了代谢多功能性可能代表海洋微生物群落中一种常见且有益的生理特征的可能性,这些群落面临着贫营养和快速变化的深海环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb49/5345036/080eab93a646/fmicb-08-00363-g001.jpg

相似文献

2
Experimental Microbial Alteration and Fe Mobilization From Basaltic Rocks of the ICDP HSDP2 Drill Core, Hilo, Hawaii.
Front Microbiol. 2018 Jun 14;9:1252. doi: 10.3389/fmicb.2018.01252. eCollection 2018.
4
Potential for microbial oxidation of ferrous iron in basaltic glass.
Astrobiology. 2015 May;15(5):331-40. doi: 10.1089/ast.2014.1233. Epub 2015 Apr 27.
5
Microbial colonization of basaltic glasses in hydrothermal organic-rich sediments at Guaymas Basin.
Front Microbiol. 2013 Aug 27;4:250. doi: 10.3389/fmicb.2013.00250. eCollection 2013.
6
Growth and Population Dynamics of the Anaerobic Fe(II)-Oxidizing and Nitrate-Reducing Enrichment Culture KS.
Appl Environ Microbiol. 2018 Apr 16;84(9). doi: 10.1128/AEM.02173-17. Print 2018 May 1.
9
Alteration textures in terrestrial volcanic glass and the associated bacterial community.
Geobiology. 2009 Jan;7(1):50-65. doi: 10.1111/j.1472-4669.2008.00184.x.
10
Siderophore production by Pseudomonas stutzeri under aerobic and anaerobic conditions.
Appl Environ Microbiol. 2007 Sep;73(18):5857-64. doi: 10.1128/AEM.00072-07. Epub 2007 Aug 3.

引用本文的文献

2
Potential autotrophic carbon-fixer and Fe(II)-oxidizer sp. MM125-6 isolated from Wocan hydrothermal field.
Front Microbiol. 2022 Oct 14;13:930601. doi: 10.3389/fmicb.2022.930601. eCollection 2022.
3
Metagenomic Features Characterized with Microbial Iron Oxidoreduction and Mineral Interaction in Southwest Indian Ridge.
Microbiol Spectr. 2022 Dec 21;10(6):e0061422. doi: 10.1128/spectrum.00614-22. Epub 2022 Oct 26.
4
Basalt-Hosted Microbial Communities in the Subsurface of the Young Volcanic Island of Surtsey, Iceland.
Front Microbiol. 2021 Sep 29;12:728977. doi: 10.3389/fmicb.2021.728977. eCollection 2021.
5
Formation and loss of metastable brucite: does Fe(II)-bearing brucite support microbial activity in serpentinizing ecosystems?
Philos Trans A Math Phys Eng Sci. 2020 Feb 21;378(2165):20180423. doi: 10.1098/rsta.2018.0423. Epub 2020 Jan 6.
6
Microbial chemolithotrophy mediates oxidative weathering of granitic bedrock.
Proc Natl Acad Sci U S A. 2019 Dec 26;116(52):26394-26401. doi: 10.1073/pnas.1909970117. Epub 2019 Dec 16.
7
Experimental Microbial Alteration and Fe Mobilization From Basaltic Rocks of the ICDP HSDP2 Drill Core, Hilo, Hawaii.
Front Microbiol. 2018 Jun 14;9:1252. doi: 10.3389/fmicb.2018.01252. eCollection 2018.
8
Sediment Microbial Communities Influenced by Cool Hydrothermal Fluid Migration.
Front Microbiol. 2018 Jun 13;9:1249. doi: 10.3389/fmicb.2018.01249. eCollection 2018.

本文引用的文献

2
Microbial iron mats at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems.
PLoS One. 2015 Mar 11;10(3):e0119284. doi: 10.1371/journal.pone.0119284. eCollection 2015.
3
Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism.
Front Microbiol. 2015 Jan 14;5:784. doi: 10.3389/fmicb.2014.00784. eCollection 2014.
4
Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components.
Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12883-8. doi: 10.1073/pnas.1410551111. Epub 2014 Aug 20.
5
Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells.
Bioresour Technol. 2014;152:220-4. doi: 10.1016/j.biortech.2013.10.086. Epub 2013 Nov 5.
6
Microbial colonization of basaltic glasses in hydrothermal organic-rich sediments at Guaymas Basin.
Front Microbiol. 2013 Aug 27;4:250. doi: 10.3389/fmicb.2013.00250. eCollection 2013.
7
Metagenomic insights into the dominant Fe(II) oxidizing Zetaproteobacteria from an iron mat at Lō´ihi, Hawai´l.
Front Microbiol. 2013 Mar 19;4:52. doi: 10.3389/fmicb.2013.00052. eCollection 2013.
8
Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes.
mBio. 2013 Jan 29;4(1):e00420-12. doi: 10.1128/mBio.00420-12.
10
Imaging hydrated microbial extracellular polymers: comparative analysis by electron microscopy.
Appl Environ Microbiol. 2011 Feb;77(4):1254-62. doi: 10.1128/AEM.02001-10. Epub 2010 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验