Martínez-Carmona Marina, Colilla Montserrat, Vallet-Regí Maria
Department of Inorganic and Bioinorganic Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Sanitary Research Institute "Hospital 12 de Octubre" i+12, Ramón y Cajal Square, S/N, Madrid 28040, Spain.
Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28040, Spain.
Nanomaterials (Basel). 2015 Nov 6;5(4):1906-1937. doi: 10.3390/nano5041906.
The use of nanomaterials for the treatment of solid tumours is receiving increasing attention by the scientific community. Among them, mesoporous silica nanoparticles (MSNs) exhibit unique features that make them suitable nanocarriers to host, transport and protect drug molecules until the target is reached. It is possible to incorporate different targeting ligands to the outermost surface of MSNs to selectively drive the drugs to the tumour tissues. To prevent the premature release of the cargo entrapped in the mesopores, it is feasible to cap the pore entrances using stimuli-responsive nanogates. Therefore, upon exposure to internal (pH, enzymes, glutathione, ) or external (temperature, light, magnetic field, ) stimuli, the pore opening takes place and the release of the entrapped cargo occurs. These smart MSNs are capable of selectively reaching and accumulating at the target tissue and releasing the entrapped drug in a specific and controlled fashion, constituting a promising alternative to conventional chemotherapy, which is typically associated with undesired side effects. In this review, we overview the recent advances reported by the scientific community in developing MSNs for antitumor therapy. We highlight the possibility to design multifunctional nanosystems using different therapeutic approaches aimed at increasing the efficacy of the antitumor treatment.
纳米材料在实体肿瘤治疗中的应用正日益受到科学界的关注。其中,介孔二氧化硅纳米颗粒(MSNs)具有独特的特性,使其成为承载、运输和保护药物分子直至到达靶点的合适纳米载体。可以将不同的靶向配体结合到MSNs的最外表面,以选择性地将药物导向肿瘤组织。为了防止被困在介孔中的货物过早释放,使用刺激响应纳米门封堵孔口是可行的。因此,在受到内部(pH值、酶、谷胱甘肽等)或外部(温度、光、磁场等)刺激时,孔口打开,被困货物释放。这些智能MSNs能够选择性地到达并在靶组织中积累,并以特定且可控的方式释放被困药物,构成了传统化疗的一种有前景的替代方案,传统化疗通常会产生不良副作用。在本综述中,我们概述了科学界在开发用于抗肿瘤治疗的MSNs方面的最新进展。我们强调了使用不同治疗方法设计多功能纳米系统以提高抗肿瘤治疗效果的可能性。