Delguste Martin, Koehler Melanie, Alsteens David
Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
Methods Mol Biol. 2018;1814:483-514. doi: 10.1007/978-1-4939-8591-3_29.
In the last years, atomic force microscopy (AFM)-based approaches have evolved into a powerful multiparametric tool that allows biological samples ranging from single receptors to membranes and tissues to be probed. Force-distance curve-based AFM (FD-based AFM) nowadays enables to image living cells at high resolution and simultaneously localize and characterize specific ligand-receptor binding events. In this chapter, we present how FD-based AFM permits to investigate virus binding to living mammalian cells and quantify the kinetic and thermodynamic parameters that describe the free-energy landscape of the single virus-receptor-mediated binding. Using a model virus, we probed the specific interaction with cells expressing its cognate receptor and measured the affinity of the interaction. Furthermore, we observed that the virus rapidly established specific multivalent interactions and found that each bond formed in sequence strengthens the attachment of the virus to the cell.
在过去几年中,基于原子力显微镜(AFM)的方法已发展成为一种强大的多参数工具,可用于探测从单个受体到膜和组织等各种生物样品。如今,基于力-距离曲线的原子力显微镜(FD-AFM)能够以高分辨率对活细胞进行成像,并同时定位和表征特定的配体-受体结合事件。在本章中,我们将介绍基于FD的AFM如何用于研究病毒与活的哺乳动物细胞的结合,并量化描述单个病毒-受体介导结合的自由能景观的动力学和热力学参数。使用一种模型病毒,我们探测了其与表达同源受体的细胞的特异性相互作用,并测量了相互作用的亲和力。此外,我们观察到病毒迅速建立了特异性多价相互作用,并发现依次形成的每个键都增强了病毒与细胞的附着。