Suppr超能文献

使用共振纳米天线的表面增强红外光谱

Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas.

作者信息

Neubrech Frank, Huck Christian, Weber Ksenia, Pucci Annemarie, Giessen Harald

机构信息

4th Physics Institute and Research Center SCoPE, University of Stuttgart , Pfaffenwaldring 57, Stuttgart 70569, Germany.

Kirchhoff Institute for Physics, Heidelberg University , Im Neuenheimer Feld 227, Heidelberg 69120, Germany.

出版信息

Chem Rev. 2017 Apr 12;117(7):5110-5145. doi: 10.1021/acs.chemrev.6b00743. Epub 2017 Mar 30.

Abstract

Infrared spectroscopy is a powerful tool widely used in research and industry for a label-free and unambiguous identification of molecular species. Inconveniently, its application to spectroscopic analysis of minute amounts of materials, for example, in sensing applications, is hampered by the low infrared absorption cross-sections. Surface-enhanced infrared spectroscopy using resonant metal nanoantennas, or short "resonant SEIRA", overcomes this limitation. Resonantly excited, such metal nanostructures feature collective oscillations of electrons (plasmons), providing huge electromagnetic fields on the nanometer scale. Infrared vibrations of molecules located in these fields are enhanced by orders of magnitude enabling a spectroscopic characterization with unprecedented sensitivity. In this Review, we introduce the concept of resonant SEIRA and discuss the underlying physics, particularly, the resonant coupling between molecular and antenna excitations as well as the spatial extent of the enhancement and its scaling with frequency. On the basis of these fundamentals, different routes to maximize the SEIRA enhancement are reviewed including the choice of nanostructures geometries, arrangements, and materials. Furthermore, first applications such as the detection of proteins, the monitoring of dynamic processes, and hyperspectral infrared chemical imaging are discussed, demonstrating the sensitivity and broad applicability of resonant SEIRA.

摘要

红外光谱是一种强大的工具,在研究和工业中广泛用于对分子种类进行无标记且明确的识别。然而,其在微量材料光谱分析中的应用,例如在传感应用中,受到低红外吸收截面的阻碍。使用共振金属纳米天线的表面增强红外光谱,即短“共振表面增强红外吸收光谱”,克服了这一限制。在共振激发下,此类金属纳米结构具有电子的集体振荡(等离子体激元),在纳米尺度上提供巨大的电磁场。位于这些场中的分子的红外振动增强了几个数量级,从而能够以前所未有的灵敏度进行光谱表征。在本综述中,我们介绍共振表面增强红外吸收光谱的概念,并讨论其背后的物理原理,特别是分子与天线激发之间的共振耦合以及增强的空间范围及其随频率的缩放。基于这些基本原理,综述了不同的使表面增强红外吸收光谱增强最大化的途径,包括纳米结构几何形状、排列和材料的选择。此外,还讨论了诸如蛋白质检测、动态过程监测和高光谱红外化学成像等首次应用,展示了共振表面增强红外吸收光谱的灵敏度和广泛适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验