Suppr超能文献

使用分层协变量调整独立成分分析研究脑功能网络差异

INVESTIGATING DIFFERENCES IN BRAIN FUNCTIONAL NETWORKS USING HIERARCHICAL COVARIATE-ADJUSTED INDEPENDENT COMPONENT ANALYSIS.

作者信息

Shi Ran, Guo Ying

机构信息

Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Rd., Atlanta, Georgia 30322 USA.

出版信息

Ann Appl Stat. 2016 Dec;10(4):1930-1957. doi: 10.1214/16-AOAS946. Epub 2017 Jan 5.

Abstract

Human brains perform tasks via complex functional networks consisting of separated brain regions. A popular approach to characterize brain functional networks in fMRI studies is independent component analysis (ICA), which is a powerful method to reconstruct latent source signals from their linear mixtures. In many fMRI studies, an important goal is to investigate how brain functional networks change according to specific clinical and demographic variabilities. Existing ICA methods, however, cannot directly incorporate covariate effects in ICA decomposition. Heuristic post-ICA analysis to address this need can be inaccurate and inefficient. In this paper, we propose a hierarchical covariate-adjusted ICA (hc-ICA) model that provides a formal statistical framework for estimating covariate effects and testing differences between brain functional networks. Our method provides a more reliable and powerful statistical tool for evaluating group differences in brain functional networks while appropriately controlling for potential confounding factors. We present an analytically tractable EM algorithm to obtain maximum likelihood estimates of our model. We also develop a subspace-based approximate EM that runs significantly faster while retaining high accuracy. To test the differences in functional networks, we introduce a voxel-wise approximate inference procedure which eliminates the need of computationally expensive covariance matrix estimation and inversion. We demonstrate the advantages of our methods over the existing method via simulation studies. We apply our method to an fMRI study to investigate differences in brain functional networks associated with post-traumatic stress disorder (PTSD).

摘要

人类大脑通过由分离的脑区组成的复杂功能网络执行任务。在功能磁共振成像(fMRI)研究中,一种常用的表征脑功能网络的方法是独立成分分析(ICA),它是一种从线性混合信号中重建潜在源信号的强大方法。在许多fMRI研究中,一个重要目标是研究脑功能网络如何根据特定的临床和人口统计学变量而变化。然而,现有的ICA方法无法在ICA分解中直接纳入协变量效应。为满足这一需求而进行的启发式ICA后分析可能不准确且效率低下。在本文中,我们提出了一种分层协变量调整ICA(hc-ICA)模型,该模型为估计协变量效应和检验脑功能网络之间的差异提供了一个正式的统计框架。我们的方法提供了一个更可靠、更强大的统计工具,用于评估脑功能网络中的组间差异,同时适当控制潜在的混杂因素。我们提出了一种易于分析处理的期望最大化(EM)算法来获得我们模型的最大似然估计。我们还开发了一种基于子空间的近似EM算法,它运行速度明显更快,同时保持高精度。为了检验功能网络的差异,我们引入了一种逐体素近似推理程序,该程序无需进行计算昂贵的协方差矩阵估计和求逆。我们通过模拟研究证明了我们的方法相对于现有方法的优势。我们将我们的方法应用于一项fMRI研究,以调查与创伤后应激障碍(PTSD)相关的脑功能网络差异。

相似文献

8
A group model for stable multi-subject ICA on fMRI datasets.基于 fMRI 数据集的稳定多体独立成分分析的组模型。
Neuroimage. 2010 May 15;51(1):288-99. doi: 10.1016/j.neuroimage.2010.02.010. Epub 2010 Feb 12.
9
Analysis of fMRI data by blind separation into independent spatial components.通过盲分离为独立空间成分对功能磁共振成像数据进行分析。
Hum Brain Mapp. 1998;6(3):160-88. doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1.

引用本文的文献

4
Bayesian Spatial Blind Source Separation via the Thresholded Gaussian Process.基于阈值高斯过程的贝叶斯空间盲源分离
J Am Stat Assoc. 2024;119(545):422-433. doi: 10.1080/01621459.2022.2123336. Epub 2022 Nov 28.
8
BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks.脑图基准:基于图神经网络的脑网络分析基准
IEEE Trans Med Imaging. 2023 Feb;42(2):493-506. doi: 10.1109/TMI.2022.3218745. Epub 2023 Feb 2.

本文引用的文献

8
Correspondence of the brain's functional architecture during activation and rest.大脑在激活和静息状态下功能结构的对应关系。
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5. doi: 10.1073/pnas.0905267106. Epub 2009 Jul 20.
9
10
Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele.携带APOE-ε4等位基因的年轻人大脑活动的不同模式。
Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7209-14. doi: 10.1073/pnas.0811879106. Epub 2009 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验