Suppr超能文献

迈向采用自包封聚乳酸-羟基乙酸共聚物微球的单剂量疫苗接种策略。

Toward a Single-Dose Vaccination Strategy with Self-Encapsulating PLGA Microspheres.

作者信息

Bailey Brittany A, Ochyl Lukasz J, Schwendeman Steven P, Moon James J

机构信息

Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.

Department of Biomedical Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.

出版信息

Adv Healthc Mater. 2017 Jun;6(12). doi: 10.1002/adhm.201601418. Epub 2017 Apr 3.

Abstract

Poly(lactic-co-glycolic acid) (PLGA) microspheres have been widely examined for vaccine applications due to their attractive features of biocompatibility, biodegradability, ability to be internalized by antigen-presenting cells, and long-term antigen release. However, one of the major challenges for PLGA particle vaccines is the potential for antigen instability and loss of antigenicity and immunogenicity. To address this challenge, we have developed a new method of "self-healing" encapsulation in PLGA microspheres, where pre-made PLGA microspheres are loaded with protein antigens under aqueous conditions with minimal impact on their antigenicity and immunogenicity. In this report, we show that mice immunized with self-encapsulating PLGA microspheres in a prime-boost regimen generated significantly enhanced antigen-specific CD8α+ T cell and antibody responses, compared with mice immunized with free, soluble protein admixed with calcium phosphate gel, a widely used adjuvant. Furthermore, a single-dose of microspheres designed for >40 day sustained antigen release elicited robust cellular and humoral immune responses as efficiently as the prime-boost vaccinations with calcium phosphate gel. Overall, these results suggest excellent potential of our self-encapsulating PLGA microspheres as a vaccine platform for multiple-dose as well as single-dose vaccinations.

摘要

聚乳酸-乙醇酸共聚物(PLGA)微球因其具有生物相容性、可生物降解性、能被抗原呈递细胞内化以及可长期释放抗原等吸引人的特性,已被广泛用于疫苗应用研究。然而,PLGA颗粒疫苗面临的主要挑战之一是抗原可能不稳定,导致抗原性和免疫原性丧失。为应对这一挑战,我们开发了一种在PLGA微球中进行“自愈”封装的新方法,即在水性条件下将预先制备的PLGA微球装载蛋白质抗原,同时对其抗原性和免疫原性的影响最小。在本报告中,我们表明,与用与广泛使用的佐剂磷酸钙凝胶混合的游离可溶性蛋白免疫的小鼠相比,在初免-加强免疫方案中用自封装PLGA微球免疫的小鼠产生了显著增强的抗原特异性CD8α+ T细胞和抗体反应。此外,设计用于持续释放抗原超过40天的单剂量微球引发的强大细胞免疫和体液免疫反应,与用磷酸钙凝胶进行初免-加强免疫一样有效。总体而言,这些结果表明我们的自封装PLGA微球作为多剂量和单剂量疫苗接种的疫苗平台具有巨大潜力。

相似文献

1
Toward a Single-Dose Vaccination Strategy with Self-Encapsulating PLGA Microspheres.
Adv Healthc Mater. 2017 Jun;6(12). doi: 10.1002/adhm.201601418. Epub 2017 Apr 3.
2
Self-encapsulating Poly(lactic-co-glycolic acid) (PLGA) Microspheres for Intranasal Vaccine Delivery.
Mol Pharm. 2017 Sep 5;14(9):3228-3237. doi: 10.1021/acs.molpharmaceut.7b00586. Epub 2017 Aug 22.
6
Active self-healing encapsulation of vaccine antigens in PLGA microspheres.
J Control Release. 2013 Jan 10;165(1):62-74. doi: 10.1016/j.jconrel.2012.10.012. Epub 2012 Oct 24.
7
Comparison of humoral and cell-mediated immune responses to cationic PLGA microspheres containing recombinant hepatitis B antigen.
Int J Pharm. 2011 Apr 15;408(1-2):50-7. doi: 10.1016/j.ijpharm.2011.01.045. Epub 2011 Feb 1.
8
Time course study of the antigen-specific immune response to a PLGA microparticle vaccine formulation.
Biomaterials. 2014 Sep;35(29):8385-93. doi: 10.1016/j.biomaterials.2014.05.067. Epub 2014 Jun 27.
9
Co-encapsulation of an antigen and CpG oligonucleotides into PLGA microparticles by TROMS technology.
Eur J Pharm Biopharm. 2008 Sep;70(1):98-108. doi: 10.1016/j.ejpb.2008.03.015. Epub 2008 Mar 31.
10
Hepatitis C virus E2 protein encapsulation into poly d, l-lactic--glycolide microspheres could induce mice cytotoxic T-cell response.
Int J Nanomedicine. 2016 Oct 14;11:5361-5370. doi: 10.2147/IJN.S109081. eCollection 2016.

引用本文的文献

1
Nanoscale Biodegradable Printing for Designed Tuneability of Vaccine Delivery Kinetics.
Adv Mater. 2025 Apr;37(15):e2417290. doi: 10.1002/adma.202417290. Epub 2025 Feb 28.
2
Synergistic Potential of Nanomedicine in Prostate Cancer Immunotherapy: Breakthroughs and Prospects.
Int J Nanomedicine. 2024 Oct 2;19:9459-9486. doi: 10.2147/IJN.S466396. eCollection 2024.
3
Immune Potentiation of PLGA Controlled-Release Vaccines for Improved Immunological Outcomes.
ACS Omega. 2024 Feb 28;9(10):11608-11614. doi: 10.1021/acsomega.3c06552. eCollection 2024 Mar 12.
4
Metal-HisTag coordination for remote loading of very small quantities of biomacromolecules into PLGA microspheres.
Bioeng Transl Med. 2022 Feb 17;7(2):e10272. doi: 10.1002/btm2.10272. eCollection 2022 May.
5
Emerging vaccine nanotechnology: From defense against infection to sniping cancer.
Acta Pharm Sin B. 2022 May;12(5):2206-2223. doi: 10.1016/j.apsb.2021.12.021. Epub 2022 Jan 4.
6
Hitchhiking on Controlled-Release Drug Delivery Systems: Opportunities and Challenges for Cancer Vaccines.
Front Pharmacol. 2021 May 10;12:679602. doi: 10.3389/fphar.2021.679602. eCollection 2021.
7
Microarray patches enable the development of skin-targeted vaccines against COVID-19.
Adv Drug Deliv Rev. 2021 Apr;171:164-186. doi: 10.1016/j.addr.2021.01.022. Epub 2021 Feb 2.
8
Engineered drug delivery devices to address Global Health challenges.
J Control Release. 2021 Mar 10;331:503-514. doi: 10.1016/j.jconrel.2021.01.035. Epub 2021 Jan 28.
9
Protein Loading into Spongelike PLGA Microspheres.
Pharmaceutics. 2021 Jan 21;13(2):137. doi: 10.3390/pharmaceutics13020137.
10
Integrating Biomaterials and Immunology to Improve Vaccines Against Infectious Diseases.
ACS Biomater Sci Eng. 2020 Feb 10;6(2):759-778. doi: 10.1021/acsbiomaterials.9b01255. Epub 2020 Jan 12.

本文引用的文献

1
Particulate delivery systems for vaccination against bioterrorism agents and emerging infectious pathogens.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Jan;9(1). doi: 10.1002/wnan.1403. Epub 2016 Apr 1.
3
Cationic liposome-hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens.
J Control Release. 2015 Jun 28;208:121-129. doi: 10.1016/j.jconrel.2015.04.010. Epub 2015 Apr 11.
4
Self-healing of pores in PLGAs.
J Control Release. 2015 May 28;206:20-9. doi: 10.1016/j.jconrel.2015.02.025. Epub 2015 Feb 19.
5
Biomaterials for nanoparticle vaccine delivery systems.
Pharm Res. 2014 Oct;31(10):2563-82. doi: 10.1007/s11095-014-1419-y. Epub 2014 May 22.
6
Healing kinetics of microneedle-formed pores in PLGA films.
J Control Release. 2013 Oct 28;171(2):172-7. doi: 10.1016/j.jconrel.2013.06.035. Epub 2013 Jul 5.
7
Active self-healing encapsulation of vaccine antigens in PLGA microspheres.
J Control Release. 2013 Jan 10;165(1):62-74. doi: 10.1016/j.jconrel.2012.10.012. Epub 2012 Oct 24.
8
Biodegradable particles as vaccine delivery systems: size matters.
AAPS J. 2013 Jan;15(1):85-94. doi: 10.1208/s12248-012-9418-6. Epub 2012 Oct 10.
9
Self-healing microencapsulation of biomacromolecules without organic solvents.
Angew Chem Int Ed Engl. 2012 Oct 22;51(43):10800-3. doi: 10.1002/anie.201206387. Epub 2012 Sep 26.
10
Immunological mechanisms of vaccination.
Nat Immunol. 2011 Jun;12(6):509-17. doi: 10.1038/ni.2039.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验