Research Support Unit, Hospital General La Mancha Centro, Ciudad Real, Spain.
Preventive Medicine Unit, Pare Jofré Hospital, Valencia, Spain.
Health Serv Res. 2018 Jun;53(3):1919-1956. doi: 10.1111/1475-6773.12691. Epub 2017 Apr 11.
To conduct an updated assessment of the validity and reliability of administrative coded data (ACD) in identifying hospital-acquired infections (HAIs).
We systematically searched three libraries for studies on ACD detecting HAIs compared to manual chart review. Meta-analyses were conducted for prosthetic and nonprosthetic surgical site infections (SSIs), Clostridium difficile infections (CDIs), ventilator-associated pneumonias/events (VAPs/VAEs) and non-VAPs/VAEs, catheter-associated urinary tract infections (CAUTIs), and central venous catheter-related bloodstream infections (CLABSIs). A random-effects meta-regression model was constructed.
Of 1,906 references found, we retrieved 38 documents, of which 33 provided meta-analyzable data (N = 567,826 patients). ACD identified HAI incidence with high specificity (≥93 percent), prosthetic SSIs with high sensitivity (95 percent), and both CDIs and nonprosthetic SSIs with moderate sensitivity (65 percent). ACD exhibited substantial agreement with traditional surveillance methods for CDI (κ = 0.70) and provided strong diagnostic odds ratios (DORs) for the identification of CDIs (DOR = 772.07) and SSIs (DOR = 78.20). ACD performance in identifying nosocomial pneumonia depended on the ICD coding system (DOR = 0.05; p = .036). Algorithmic coding improved ACD's sensitivity for SSIs up to 22 percent. Overall, high heterogeneity was observed, without significant publication bias.
Administrative coded data may not be sufficiently accurate or reliable for the majority of HAIs. Still, subgrouping and algorithmic coding as tools for improving ACD validity deserve further investigation, specifically for prosthetic SSIs. Analyzing a potential lower discriminative ability of ICD-10 coding system is also a pending issue.
对利用行政编码数据(ACD)识别医院获得性感染(HAI)的有效性和可靠性进行最新评估。
我们系统性地在三个数据库中检索了比较 ACD 与手动图表审查检测 HAI 的研究。对假体和非假体手术部位感染(SSI)、艰难梭菌感染(CDI)、呼吸机相关性肺炎/事件(VAP/VAEs)和非 VAP/VAEs、导管相关性尿路感染(CAUTI)和中心静脉导管相关血流感染(CLABSI)进行了荟萃分析。构建了随机效应荟萃回归模型。
在检索到的 1906 篇参考文献中,我们共获取了 38 篇文献,其中 33 篇提供了可进行荟萃分析的数据(N=567826 例患者)。ACD 识别 HAI 发病率的特异性较高(≥93%),假体 SSI 的敏感性较高(95%),CDI 和非假体 SSI 的敏感性中等(65%)。与传统监测方法相比,ACD 对 CDI 的一致性较好(κ=0.70),对 CDI(诊断优势比[DOR] = 772.07)和 SSI(DOR = 78.20)的诊断具有较强的比值比。在识别医院获得性肺炎时,ACD 的性能取决于 ICD 编码系统(DOR=0.05;p=0.036)。算法编码可将 ACD 检测 SSI 的敏感性提高 22%。总体而言,观察到高度异质性,且无显著的发表偏倚。
对于大多数 HAI,行政编码数据可能不够准确或可靠。然而,分组和算法编码作为提高 ACD 有效性的工具值得进一步研究,尤其是对假体 SSI 而言。分析 ICD-10 编码系统潜在的较低鉴别能力也是一个待解决的问题。