Blanquer Sébastien B G, Werner Maike, Hannula Markus, Sharifi Shahriar, Lajoinie Guillaume P R, Eglin David, Hyttinen Jari, Poot André A, Grijpma Dirk W
MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands. Institut Charles Gerhardt de Montpellier UMR5253 CNRS-UM-ENSCM-Equipe Ingénierie et Architectures Macromoléculaires, Université de Montpellier, F-34095 Montpellier, France.
Biofabrication. 2017 Apr 12;9(2):025001. doi: 10.1088/1758-5090/aa6553.
Reproduction of the anatomical structures and functions of tissues using cells and designed 3D scaffolds is an ongoing challenge. For this, scaffolds with appropriate biomorphic surfaces promoting cell attachment, proliferation and differentiation are needed. In this study, eight triply-periodic minimal surface (TPMS)-based scaffolds were designed using specific trigonometric equations, providing the same porosity and the same number of unit cells, while presenting different surface curvatures. The scaffolds were fabricated by stereolithography using a photocurable resin based on the biocompatible, biodegradable and rubber-like material, poly(trimethylene carbonate) (PTMC). A numerical approach was developed to calculate the surface curvature distributions of the TPMS architectures. Moreover, the scaffolds were characterized by scanning electron microscopy, micro-computed tomography and water permeability measurements. These original scaffold architectures will be helpful to decipher the biofunctional role of the surface curvature of scaffolds intended for tissue engineering applications.
利用细胞和设计的3D支架再现组织的解剖结构和功能是一项持续的挑战。为此,需要具有促进细胞附着、增殖和分化的适当生物形态表面的支架。在本研究中,使用特定的三角方程设计了八种基于三重周期最小表面(TPMS)的支架,它们具有相同的孔隙率和相同数量的单元细胞,同时呈现出不同的表面曲率。这些支架通过立体光刻技术使用基于生物相容性、可生物降解且类似橡胶的材料聚碳酸三亚甲酯(PTMC)的光固化树脂制造而成。开发了一种数值方法来计算TPMS结构的表面曲率分布。此外,通过扫描电子显微镜、微型计算机断层扫描和水渗透性测量对支架进行了表征。这些原始的支架结构将有助于解读用于组织工程应用的支架表面曲率的生物功能作用。