Suppr超能文献

机器学习超声影像组学与三阴性乳腺癌疾病预后的关联

Association of machine learning ultrasound radiomics and disease outcome in triple negative breast cancer.

作者信息

Wang Haoyu, Li Xiaokang, Yuan Ying, Tong Yiwei, Zhu Siyi, Huang Renhong, Shen Kunwei, Guo Yi, Wang Yuanyuan, Chen Xiaosong

机构信息

Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200025, China.

Department of Electronic Engineering, Fudan University Shanghai 200433, China.

出版信息

Am J Cancer Res. 2022 Jan 15;12(1):152-164. eCollection 2022.

Abstract

Triple negative breast cancer (TNBC) is a breast cancer subtype with unfavorable prognosis. We aimed to establish a machine learning-based ultrasound radiomics model to predict disease-free survival (DFS) in TNBC. Invasive TNBC>T1b between January 2009 and June 2018 with preoperative ultrasound were enrolled and assigned to training and independent test cohort. Radiomics and clinicopathological features related with DFS were selected by univariate and multivariate regression analysis. Training cohort of combined features was resampled with SMOTEENN to balance distribution and put into classifiers. Areas Under Curves (AUCs) of models were compared by DeLong's test. 562 women were included with 68 DFS events observed. Twenty prognostic radiomics features were extracted. Machine learning model by Naïve Bayes combining radiomics, clinicopathological features, and SMOTEENN had an AUC of 0.86 (95% CI 0.84-0.88), with sensitivity of 74.7% and specificity of 80.1% in training cohort. In independent test cohort, this three-combination model delivered an AUC of 0.90 (95% CI 0.83-0.95), higher than models based on radiomics (AUC=0.69, P=0.016) or radiomics + SMOTEENN (AUC=0.73, P=0.019). Integrating machine learning radiomics model based on ultrasound and clinicopathological features can predict DFS events for TNBC patients.

摘要

三阴性乳腺癌(TNBC)是一种预后不良的乳腺癌亚型。我们旨在建立一种基于机器学习的超声影像组学模型,以预测TNBC患者的无病生存期(DFS)。纳入2009年1月至2018年6月期间术前接受超声检查的浸润性TNBC>T1b患者,并将其分配到训练组和独立测试组。通过单因素和多因素回归分析选择与DFS相关的影像组学和临床病理特征。对合并特征的训练组采用SMOTEENN重采样以平衡分布,并将其放入分类器中。通过DeLong检验比较模型的曲线下面积(AUC)。共纳入562名女性,观察到68例DFS事件。提取了20个预后影像组学特征。朴素贝叶斯结合影像组学、临床病理特征和SMOTEENN的机器学习模型在训练组中的AUC为0.86(95%CI 0.84-0.88),敏感性为74.7%,特异性为80.1%。在独立测试组中,这种三联模型的AUC为0.90(95%CI 0.83-0.95),高于基于影像组学的模型(AUC=0.69,P=0.016)或影像组学+SMOTEENN的模型(AUC=0.73,P=0.019)。基于超声和临床病理特征的机器学习影像组学模型能够预测TNBC患者的DFS事件。

相似文献

引用本文的文献

8
Artificial intelligence in breast imaging: Current situation and clinical challenges.乳腺成像中的人工智能:现状与临床挑战
Exploration (Beijing). 2023 Jul 20;3(5):20230007. doi: 10.1002/EXP.20230007. eCollection 2023 Oct.

本文引用的文献

4
Radiomics in breast cancer classification and prediction.放射组学在乳腺癌分类与预测中的应用
Semin Cancer Biol. 2021 Jul;72:238-250. doi: 10.1016/j.semcancer.2020.04.002. Epub 2020 May 1.
7
Cancer statistics, 2020.癌症统计数据,2020 年。
CA Cancer J Clin. 2020 Jan;70(1):7-30. doi: 10.3322/caac.21590. Epub 2020 Jan 8.
10
Artificial intelligence in breast imaging.人工智能在乳腺成像中的应用。
Clin Radiol. 2019 May;74(5):357-366. doi: 10.1016/j.crad.2019.02.006. Epub 2019 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验