Suppr超能文献

结核分枝杆菌耐药性预测和基因组测序谱系分类:自动化分析工具比较。

Mycobacterium tuberculosis resistance prediction and lineage classification from genome sequencing: comparison of automated analysis tools.

机构信息

Division of Molecular and Experimental Mycobacteriology Group, Research Center Borstel, Borstel, Germany.

Department of Genetics, University of Cambridge, Cambridge, United Kingdom.

出版信息

Sci Rep. 2017 Apr 20;7:46327. doi: 10.1038/srep46327.

Abstract

Whole-genome sequencing (WGS) has the potential to accelerate drug-susceptibility testing (DST) to design appropriate regimens for drug-resistant tuberculosis (TB). Several recently developed automated software tools promise to standardize the analysis and interpretation of WGS data. We assessed five tools (CASTB, KvarQ, Mykrobe Predictor TB, PhyResSE, and TBProfiler) with regards to DST and phylogenetic lineage classification, which we compared with phenotypic DST, Sanger sequencing, and traditional typing results for a collection of 91 strains. The lineage classifications by the tools generally only differed in the resolution of the results. However, some strains could not be classified at all and one strain was misclassified. The sensitivities and specificities for isoniazid and rifampicin resistance of the tools were high, whereas the results for ethambutol, pyrazinamide, and streptomycin resistance were more variable. False-susceptible DST results were mainly due to missing mutations in the resistance catalogues that the respective tools employed for data interpretation. Notably, we also found cases of false-resistance because of the misclassification of polymorphisms as resistance mutations. In conclusion, the performance of current WGS analysis tools for DST is highly variable. Sustainable business models and a shared, high-quality catalogue of resistance mutations are needed to ensure the clinical utility of these tools.

摘要

全基因组测序(WGS)有可能加速药敏试验(DST),从而为耐药结核病(TB)设计合适的治疗方案。最近开发的几种自动化软件工具有望使 WGS 数据分析和解释标准化。我们评估了 5 种工具(CASTB、KvarQ、Mykrobe Predictor TB、PhyResSE 和 TBProfiler)在 DST 和系统发育谱系分类方面的性能,将其与表型 DST、Sanger 测序和传统分型结果进行了比较,共涉及 91 株菌株。这些工具的谱系分类结果仅在分辨率上存在差异。然而,有些菌株根本无法分类,有些菌株被错误分类。这些工具对异烟肼和利福平耐药性的敏感性和特异性较高,而对乙胺丁醇、吡嗪酰胺和链霉素耐药性的结果则更为多变。假敏感 DST 结果主要是由于各自工具用于数据解释的耐药性目录中缺失了突变。值得注意的是,我们还发现了由于将多态性错误分类为耐药性突变而导致的假耐药性情况。总之,当前 WGS 分析工具在 DST 方面的性能差异很大。需要可持续的商业模式和共享的高质量耐药性突变目录,以确保这些工具的临床实用性。

相似文献

引用本文的文献

2
A Profile of Drug-Resistant Mutations in Isolates from Guangdong Province, China.中国广东省分离株的耐药突变概况
Indian J Microbiol. 2024 Sep;64(3):1044-1056. doi: 10.1007/s12088-024-01236-3. Epub 2024 Mar 20.
5
Direct detection of drug-resistant using targeted next generation sequencing.利用靶向下一代测序直接检测耐药性。
Front Public Health. 2023 Jun 29;11:1206056. doi: 10.3389/fpubh.2023.1206056. eCollection 2023.

本文引用的文献

10
Treatment of Tuberculosis.结核病的治疗
N Engl J Med. 2015 Nov 26;373(22):2149-60. doi: 10.1056/NEJMra1413919.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验