Department of Radiology and Imaging Sciences, Emory University School of Medicine , Atlanta, Georgia 30322, United States.
Department of Radiology, The People's Hospital of Longhua , Shenzhen, Guangdong 518109, China.
ACS Nano. 2017 May 23;11(5):4582-4592. doi: 10.1021/acsnano.7b00038. Epub 2017 May 4.
Poor delivery efficiency remains a major challenge in nanomaterial-based tumor-targeted imaging and drug delivery. This work demonstrates a strategy to improve nanoparticle delivery and intratumoral distribution using sub-5 nm (3.5 nm core size) ultrafine iron oxide nanoparticles (uIONP) that can easily extravasate from the tumor vasculature and readily diffuse into the tumor tissue compared to the iron oxide nanoparticle (IONP) with larger sizes, followed by self-assembling in the acidic tumor interstitial space to limit their re-entering into circulation. By combining enhanced extravasation and reduced intravasation, we achieved improved delivery and tumor retention of nanoparticles. Multiphoton imaging of mice bearing orthotopic tumors co-injected with fluorescent dye-labeled nanoparticles with different sizes showed that uIONPs exhibited more efficient extravasation out of tumor vessels and penetrated deeper into the tumor than larger sized IONP counterparts. Moreover, in vivo magnetic resonance imaging revealed that uIONPs exhibited "bright" T contrast when dispersed in the tumor vasculature and peripheral area at 1 h after intravenous administration, followed by emerging "dark" T contrast in the tumor after 24 h. Observed T-T contrast switch indicated that uIONPs single-dispersed in blood with T contrast may self-assemble into larger clusters with T contrast after entering the tumor interstitial space. Improved passive targeting and intratumoral delivery along with increased tumor retention of uIONPs are due to both easy extravasation into the tumor when single-dispersed and restricting intravasation back into circulation after forming clusters, thus exerting the enhanced permeability and retention effect for nanoparticle delivery to tumors.
纳米材料基肿瘤靶向成像和药物递送的递送效率仍然是一个主要挑战。本工作展示了一种策略,使用亚 5nm(3.5nm 核尺寸)超细微氧化铁纳米颗粒(uIONP)提高纳米颗粒的递送和肿瘤内分布,与具有较大尺寸的氧化铁纳米颗粒(IONP)相比,uIONP 可以更容易地从肿瘤血管中外渗,并容易扩散到肿瘤组织中,然后在酸性肿瘤间质空间中自组装,以限制它们重新进入循环。通过增强外渗和减少内渗,我们实现了纳米颗粒的递送和肿瘤保留的改善。共注射具有不同尺寸的荧光染料标记纳米颗粒的荷原位肿瘤小鼠的多光子成像显示,uIONP 比大尺寸的 IONP 更有效地从肿瘤血管中外渗,并渗透到肿瘤更深部位。此外,体内磁共振成像显示,uIONP 在静脉给药后 1 小时分散在肿瘤血管和周围区域时表现出“亮”T 对比,24 小时后在肿瘤中出现“暗”T 对比。观察到的 T-T 对比转换表明,uIONP 在血液中单分散时具有 T 对比,可能在进入肿瘤间质空间后自组装成具有 T 对比的较大簇。uIONP 的被动靶向和肿瘤内递送的改善以及肿瘤保留的增加归因于单分散时易于外渗到肿瘤中,以及形成簇后限制返回循环的内渗,从而对纳米颗粒递送到肿瘤中发挥增强的通透性和保留效应。
Fundam Res. 2025-1-2
Int J Nanomedicine. 2025-6-17
Acta Pharm Sin B. 2025-2
Theranostics. 2024
Exploration (Beijing). 2024-3-15
J Nanobiotechnology. 2024-10-8
Nat Rev Cancer. 2017-1
Nat Rev Clin Oncol. 2016-8-17
Nat Mater. 2016-8-15
ACS Nano. 2016-5-12
Nat Nanotechnol. 2016-2-15
Adv Drug Deliv Rev. 2016-1-20