Escaray Francisco José, Passeri Valentina, Perea-García Ana, Antonelli Cristian Javier, Damiani Francesco, Ruiz Oscar Adolfo, Paolocci Francesco
Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECh) / Universidad Nacional de San Martín. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina.
Institute of Biosciences and BioResources (CNR-IBBR), Perugia, Italy.
Planta. 2017 Aug;246(2):243-261. doi: 10.1007/s00425-017-2696-6. Epub 2017 Apr 20.
By exploiting interspecific hybrids and their progeny, we identified key regulatory and transporter genes intimately related to proanthocyanidin biosynthesis in leaves of Lotus spp. Proanthocyanidins (PAs), known as condensed tannins, are polymeric flavonoids enriching forage legumes of key nutritional value to prevent bloating in ruminant animals. Unfortunately, major forage legumes such as alfalfa and clovers lack PAs in edible tissues. Therefore, engineering the PA trait in herbage of forage legumes is paramount to improve both ecological and economical sustainability of cattle production system. Progresses on the understanding of genetic determinants controlling PA biosynthesis and accumulation have been mainly made studying mutants of Arabidopsis, Medicago truncatula and Lotus japonicus, model species unable to synthesize PAs in the leaves. Here, we exploited interspecific hybrids between Lotus corniculatus, with high levels of PAs in the leaves, and Lotus tenuis, with no PAs in these organs, and relative F progeny, to identify among candidate PA regulators and transporters the genes mainly affecting this trait. We found that the levels of leaf PAs significantly correlate with the expression of MATE1, the putative transporter of glycosylated PA monomers, and, among the candidate regulatory genes, with the expression of the MYB genes TT2a, TT2b and MYB14 and the bHLH gene TT8. The expression levels of TT2b and TT8 also correlated with those of all key structural genes of the PA pathways investigated, MATE1 included. Our study unveils a different involvement of the three Lotus TT2 paralogs to the PA trait and highlights differences in the regulation of this trait in our Lotus genotypes with respect to model species. This information opens new avenues for breeding bloat safe forage legumes.
通过利用种间杂种及其后代,我们在百脉根属植物叶片中鉴定出了与原花青素生物合成密切相关的关键调控基因和转运蛋白基因。原花青素(PAs),即缩合单宁,是一类聚合黄酮类化合物,可提高豆科牧草的关键营养价值,防止反刍动物腹胀。不幸的是,苜蓿和三叶草等主要豆科牧草在可食用组织中缺乏原花青素。因此,在豆科牧草中培育具有原花青素特性对于提高养牛生产系统的生态和经济可持续性至关重要。在理解控制原花青素生物合成和积累的遗传决定因素方面,主要是通过研究拟南芥、蒺藜苜蓿和日本百脉根的突变体取得进展的,这些模式物种在叶片中无法合成原花青素。在这里,我们利用叶片中含有高水平原花青素的百脉根与这些器官中不含原花青素的细叶百脉根之间的种间杂种及其相对的F后代,在候选的原花青素调控基因和转运蛋白中鉴定出主要影响该性状的基因。我们发现,叶片中原花青素的水平与糖基化原花青素单体的推定转运蛋白MATE1的表达显著相关,并且在候选调控基因中,与MYB基因TT2a、TT2b和MYB14以及bHLH基因TT8的表达相关。TT2b和TT8的表达水平也与所研究的原花青素途径的所有关键结构基因(包括MATE1)的表达水平相关。我们的研究揭示了百脉根三个TT2旁系同源基因对原花青素性状的不同参与,并突出了我们的百脉根基因型与模式物种在该性状调控方面的差异。这些信息为培育抗腹胀的豆科牧草开辟了新途径。