Suppr超能文献

核酮糖-1,5-二磷酸羧化酶/加氧酶激活酶:适应酶修复的AAA+伴侣蛋白

Rubisco Activases: AAA+ Chaperones Adapted to Enzyme Repair.

作者信息

Bhat Javaid Y, Thieulin-Pardo Gabriel, Hartl F Ulrich, Hayer-Hartl Manajit

机构信息

Department of Cellular Biochemistry, Max-Planck-Institute of BiochemistryMartinsried, Germany.

出版信息

Front Mol Biosci. 2017 Apr 10;4:20. doi: 10.3389/fmolb.2017.00020. eCollection 2017.

Abstract

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the key enzyme of the Calvin-Benson-Bassham cycle of photosynthesis, requires conformational repair by Rubisco activase for efficient function. Rubisco mediates the fixation of atmospheric CO by catalyzing the carboxylation of the five-carbon sugar ribulose-1,5-bisphosphate (RuBP). It is a remarkably inefficient enzyme, and efforts to increase crop yields by bioengineering Rubisco remain unsuccessful. This is due in part to the complex cellular machinery required for Rubisco biogenesis and metabolic maintenance. To function, Rubisco must undergo an activation process that involves carboxylation of an active site lysine by a non-substrate CO molecule and binding of a Mg ion. Premature binding of the substrate RuBP results in an inactive enzyme. Moreover, Rubisco can also be inhibited by a range of sugar phosphates, some of which are "misfire" products of its multistep catalytic reaction. The release of the inhibitory sugar molecule is mediated by the AAA+ protein Rubisco activase (Rca), which couples hydrolysis of ATP to the structural remodeling of Rubisco. Rca enzymes are found in the vast majority of photosynthetic organisms, from bacteria to higher plants. They share a canonical AAA+ domain architecture and form six-membered ring complexes but are diverse in sequence and mechanism, suggesting their convergent evolution. In this review, we discuss recent advances in understanding the structure and function of this important group of client-specific AAA+ proteins.

摘要

核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)是光合作用卡尔文-本森-巴斯姆循环的关键酶,其高效发挥功能需要Rubisco活化酶进行构象修复。Rubisco通过催化五碳糖核酮糖-1,5-二磷酸(RuBP)的羧化作用介导大气中二氧化碳的固定。它是一种效率极低的酶,通过生物工程改造Rubisco来提高作物产量的努力仍未成功。部分原因在于Rubisco生物合成和代谢维持所需的复杂细胞机制。为发挥功能,Rubisco必须经历一个激活过程,该过程涉及一个非底物二氧化碳分子对活性位点赖氨酸的羧化以及镁离子的结合。底物RuBP的过早结合会导致酶失活。此外,Rubisco还会受到一系列糖磷酸酯的抑制,其中一些是其多步催化反应中的“错误反应”产物。抑制性糖分子的释放由AAA+蛋白Rubisco活化酶(Rca)介导,Rca将ATP水解与Rubisco的结构重塑偶联起来。从细菌到高等植物,绝大多数光合生物中都能发现Rca酶。它们具有典型的AAA+结构域架构,形成六元环复合物,但在序列和机制上存在差异,表明它们是趋同进化的。在这篇综述中,我们讨论了在理解这一重要的客户特异性AAA+蛋白组的结构和功能方面的最新进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afd/5385338/f6d38ccd973d/fmolb-04-00020-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验