Suppr超能文献

光学共振成像:一种具有亚衍射极限能力的MRI光学类似物。

Optical resonance imaging: An optical analog to MRI with sub-diffraction-limited capabilities.

作者信息

Allodi Marco A, Dahlberg Peter D, Mazuski Richard J, Davis Hunter C, Otto John P, Engel Gregory S

机构信息

Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago, Chicago, IL, 60637, USA.

Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, 60637, USA.

出版信息

ACS Photonics. 2016 Dec 21;3(12):2445-2452. doi: 10.1021/acsphotonics.6b00694. Epub 2016 Nov 8.

Abstract

We propose here optical resonance imaging (ORI), a direct optical analog to magnetic resonance imaging (MRI). The proposed pulse sequence for ORI maps space to time and recovers an image from a heterodyne-detected third-order nonlinear photon echo measurement. As opposed to traditional photon echo measurements, the third pulse in the ORI pulse sequence has significant pulse-front tilt that acts as a temporal gradient. This gradient couples space to time by stimulating the emission of a photon echo signal from different lateral spatial locations of a sample at different times, providing a widefield ultrafast microscopy. We circumvent the diffraction limit of the optics by mapping the lateral spatial coordinate of the sample with the emission time of the signal, which can be measured to high precision using interferometric heterodyne detection. This technique is thus an optical analog of MRI, where magnetic-field gradients are used to localize the spin-echo emission to a point below the diffraction limit of the radio-frequency wave used. We calculate the expected ORI signal using 15 fs pulses and 87° of pulse-front tilt, collected using /2 optics and find a two-point resolution 275 nm using 800 nm light that satisfies the Rayleigh criterion. We also derive a general equation for resolution in optical resonance imaging that indicates that there is a possibility of superresolution imaging using this technique. The photon echo sequence also enables spectroscopic determination of the input and output energy. The technique thus correlates the input energy with the final position and energy of the exciton.

摘要

我们在此提出光学共振成像(ORI),它是磁共振成像(MRI)的一种直接光学模拟。所提出的用于ORI的脉冲序列将空间映射到时间,并从外差检测的三阶非线性光子回波测量中恢复图像。与传统的光子回波测量不同,ORI脉冲序列中的第三个脉冲具有显著的脉冲前沿倾斜,其起到时间梯度的作用。该梯度通过在不同时间刺激样品不同横向空间位置发射光子回波信号,将空间与时间耦合起来,提供了一种宽视场超快显微镜技术。我们通过将样品的横向空间坐标与信号的发射时间进行映射来规避光学的衍射极限,信号的发射时间可使用干涉外差检测高精度测量。因此,该技术是MRI的光学模拟,在MRI中利用磁场梯度将自旋回波发射定位到低于所用射频波衍射极限的一个点上。我们使用15飞秒脉冲和87°的脉冲前沿倾斜计算预期的ORI信号,使用/2光学元件收集,并发现使用800纳米光时两点分辨率为275纳米,满足瑞利准则。我们还推导了光学共振成像分辨率的通用方程,表明使用该技术有可能实现超分辨率成像。光子回波序列还能够对输入和输出能量进行光谱测定。因此,该技术将输入能量与激子的最终位置和能量关联起来。

相似文献

1
Optical resonance imaging: An optical analog to MRI with sub-diffraction-limited capabilities.
ACS Photonics. 2016 Dec 21;3(12):2445-2452. doi: 10.1021/acsphotonics.6b00694. Epub 2016 Nov 8.
3
Photon gating in four-dimensional ultrafast electron microscopy.
Proc Natl Acad Sci U S A. 2015 Oct 20;112(42):12944-9. doi: 10.1073/pnas.1517942112. Epub 2015 Oct 5.
5
BLIPPED (BLIpped Pure Phase EncoDing) high resolution MRI with low amplitude gradients.
J Magn Reson. 2017 Dec;285:61-67. doi: 10.1016/j.jmr.2017.10.013. Epub 2017 Oct 31.
6
Dynamic range compression in MRI by means of a nonlinear gradient pulse.
Magn Reson Med. 1988 Mar;6(3):287-95. doi: 10.1002/mrm.1910060306.
7
Tailored spiral in-out spectral-spatial water suppression pulses for magnetic resonance spectroscopic imaging.
Magn Reson Med. 2018 Jan;79(1):31-40. doi: 10.1002/mrm.26683. Epub 2017 Mar 31.
9
Spin echo SPI methods for quantitative analysis of fluids in porous media.
J Magn Reson. 2009 Jun;198(2):252-60. doi: 10.1016/j.jmr.2009.03.002. Epub 2009 Mar 9.
10
Ultrafast Tracking of Exciton and Charge Carrier Transport in Optoelectronic Materials on the Nanometer Scale.
J Phys Chem Lett. 2019 Nov 7;10(21):6727-6733. doi: 10.1021/acs.jpclett.9b02437. Epub 2019 Oct 17.

引用本文的文献

1
Synaptotagmin 13 is neuroprotective across motor neuron diseases.
Acta Neuropathol. 2020 May;139(5):837-853. doi: 10.1007/s00401-020-02133-x. Epub 2020 Feb 17.

本文引用的文献

1
Coherent two-dimensional terahertz-terahertz-Raman spectroscopy.
Proc Natl Acad Sci U S A. 2016 Jun 21;113(25):6857-61. doi: 10.1073/pnas.1605631113. Epub 2016 Jun 6.
2
Nonlinear terahertz coherent excitation of vibrational modes of liquids.
J Chem Phys. 2015 Dec 21;143(23):234204. doi: 10.1063/1.4938165.
3
Local vibrational coherences drive the primary photochemistry of vision.
Nat Chem. 2015 Dec;7(12):980-6. doi: 10.1038/nchem.2398. Epub 2015 Nov 16.
4
Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy.
Nat Chem. 2015 Oct;7(10):785-92. doi: 10.1038/nchem.2348. Epub 2015 Sep 14.
7
Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures.
Nat Nanotechnol. 2014 Sep;9(9):682-6. doi: 10.1038/nnano.2014.167. Epub 2014 Aug 24.
8
Energy Transfer Observed in Live Cells Using Two-Dimensional Electronic Spectroscopy.
J Phys Chem Lett. 2013 Oct 11;4(21):3636-3640. doi: 10.1021/jz401944q.
9
Two-dimensional Raman-terahertz spectroscopy of water.
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20402-7. doi: 10.1073/pnas.1317459110. Epub 2013 Dec 2.
10
Independent phasing of rephasing and non-rephasing 2D electronic spectra.
J Chem Phys. 2013 Aug 28;139(8):084201. doi: 10.1063/1.4818808.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验