Allodi Marco A, Dahlberg Peter D, Mazuski Richard J, Davis Hunter C, Otto John P, Engel Gregory S
Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago, Chicago, IL, 60637, USA.
Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, 60637, USA.
ACS Photonics. 2016 Dec 21;3(12):2445-2452. doi: 10.1021/acsphotonics.6b00694. Epub 2016 Nov 8.
We propose here optical resonance imaging (ORI), a direct optical analog to magnetic resonance imaging (MRI). The proposed pulse sequence for ORI maps space to time and recovers an image from a heterodyne-detected third-order nonlinear photon echo measurement. As opposed to traditional photon echo measurements, the third pulse in the ORI pulse sequence has significant pulse-front tilt that acts as a temporal gradient. This gradient couples space to time by stimulating the emission of a photon echo signal from different lateral spatial locations of a sample at different times, providing a widefield ultrafast microscopy. We circumvent the diffraction limit of the optics by mapping the lateral spatial coordinate of the sample with the emission time of the signal, which can be measured to high precision using interferometric heterodyne detection. This technique is thus an optical analog of MRI, where magnetic-field gradients are used to localize the spin-echo emission to a point below the diffraction limit of the radio-frequency wave used. We calculate the expected ORI signal using 15 fs pulses and 87° of pulse-front tilt, collected using /2 optics and find a two-point resolution 275 nm using 800 nm light that satisfies the Rayleigh criterion. We also derive a general equation for resolution in optical resonance imaging that indicates that there is a possibility of superresolution imaging using this technique. The photon echo sequence also enables spectroscopic determination of the input and output energy. The technique thus correlates the input energy with the final position and energy of the exciton.
我们在此提出光学共振成像(ORI),它是磁共振成像(MRI)的一种直接光学模拟。所提出的用于ORI的脉冲序列将空间映射到时间,并从外差检测的三阶非线性光子回波测量中恢复图像。与传统的光子回波测量不同,ORI脉冲序列中的第三个脉冲具有显著的脉冲前沿倾斜,其起到时间梯度的作用。该梯度通过在不同时间刺激样品不同横向空间位置发射光子回波信号,将空间与时间耦合起来,提供了一种宽视场超快显微镜技术。我们通过将样品的横向空间坐标与信号的发射时间进行映射来规避光学的衍射极限,信号的发射时间可使用干涉外差检测高精度测量。因此,该技术是MRI的光学模拟,在MRI中利用磁场梯度将自旋回波发射定位到低于所用射频波衍射极限的一个点上。我们使用15飞秒脉冲和87°的脉冲前沿倾斜计算预期的ORI信号,使用/2光学元件收集,并发现使用800纳米光时两点分辨率为275纳米,满足瑞利准则。我们还推导了光学共振成像分辨率的通用方程,表明使用该技术有可能实现超分辨率成像。光子回波序列还能够对输入和输出能量进行光谱测定。因此,该技术将输入能量与激子的最终位置和能量关联起来。