Suppr超能文献

基于超分辨率分类方法的 CBCT/CT 成像中高精度面神经分割细化。

Highly Accurate Facial Nerve Segmentation Refinement From CBCT/CT Imaging Using a Super-Resolution Classification Approach.

出版信息

IEEE Trans Biomed Eng. 2018 Jan;65(1):178-188. doi: 10.1109/TBME.2017.2697916. Epub 2017 Apr 25.

Abstract

Facial nerve segmentation is of considerable importance for preoperative planning of cochlear implantation. However, it is strongly influenced by the relatively low resolution of the cone-beam computed tomography (CBCT) images used in clinical practice. In this paper, we propose a super-resolution classification method, which refines a given initial segmentation of the facial nerve to a subvoxel classification level from CBCT/CT images. The super-resolution classification method learns the mapping from low-resolution CBCT/CT images to high-resolution facial nerve label images, obtained from manual segmentation on micro-CT images. We present preliminary results on dataset, 15 ex vivo samples scanned including pairs of CBCT/CT scans and high-resolution micro-CT scans, with a leave-one-out evaluation, and manual segmentations on micro-CT images as ground truth. Our experiments achieved a segmentation accuracy with a Dice coefficient of , surface-to-surface distance of , and Hausdorff distance of . We compared the proposed technique to two other semi-automated segmentation software tools, ITK-SNAP and GeoS, and show the ability of the proposed approach to yield subvoxel levels of accuracy in delineating the facial nerve.

摘要

面神经分割对面神经植入术的术前规划具有重要意义。然而,它受到临床实践中使用的锥形束 CT(CBCT)图像分辨率相对较低的强烈影响。在本文中,我们提出了一种超分辨率分类方法,该方法将给定的面神经初始分割从 CBCT/CT 图像细化到亚像素分类水平。该超分辨率分类方法学习从低分辨率 CBCT/CT 图像到从微 CT 图像手动分割获得的高分辨率面神经标记图像的映射。我们在数据集上呈现了初步结果,包括 15 个离体样本扫描,包括 CBCT/CT 扫描对和高分辨率微 CT 扫描,采用留一法评估和微 CT 图像的手动分割作为地面实况。我们的实验实现了分割精度为 Dice 系数为 0.936,表面到表面距离为 0.546mm,Hausdorff 距离为 2.062mm。我们将提出的技术与另外两种半自动分割软件工具 ITK-SNAP 和 GeoS 进行了比较,并展示了该方法在描绘面神经方面能够达到亚像素级精度的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验