Suppr超能文献

一种用于控制生成自由基和氧化破坏缺氧癌细胞的混合纳米材料。

A Hybrid Nanomaterial for the Controlled Generation of Free Radicals and Oxidative Destruction of Hypoxic Cancer Cells.

机构信息

The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.

College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.

出版信息

Angew Chem Int Ed Engl. 2017 Jul 17;56(30):8801-8804. doi: 10.1002/anie.201702898. Epub 2017 May 2.

Abstract

Anticancer modalities based on oxygen free radicals, including photodynamic therapy and radiotherapy, have emerged as promising treatments in the clinic. However, the hypoxic environment in tumor tissue prevents the formation of oxygen free radicals. Here we introduce a novel strategy that employs oxygen-independent free radicals generated from a polymerization initiator for eradicating cancer cells. The initiator is mixed with a phase-change material and loaded into the cavities of gold nanocages. Upon irradiation by a near-infrared laser, the phase-change material is melted due to the photothermal effect of gold nanocages, leading to the release and decomposition of the loaded initiator to generate free radicals. The free radicals produced in this way are highly effective in inducing apoptosis in hypoxic cancer cells.

摘要

基于氧自由基的抗癌方式,包括光动力疗法和放射疗法,已在临床上显现出良好的治疗效果。然而,肿瘤组织中的缺氧环境会阻止氧自由基的形成。在这里,我们介绍一种新的策略,该策略利用聚合引发剂产生的与氧无关的自由基来杀灭癌细胞。引发剂与相变材料混合并装入金纳米笼的腔中。当用近红外激光照射时,由于金纳米笼的光热效应,相变材料被熔化,导致负载的引发剂释放和分解以产生自由基。以这种方式产生的自由基在诱导缺氧癌细胞凋亡方面非常有效。

相似文献

1
A Hybrid Nanomaterial for the Controlled Generation of Free Radicals and Oxidative Destruction of Hypoxic Cancer Cells.
Angew Chem Int Ed Engl. 2017 Jul 17;56(30):8801-8804. doi: 10.1002/anie.201702898. Epub 2017 May 2.
2
Initiator-Loaded Gold Nanocages as a Light-Induced Free-Radical Generator for Cancer Therapy.
Angew Chem Int Ed Engl. 2017 Jul 24;56(31):9029-9033. doi: 10.1002/anie.201703159. Epub 2017 Jun 28.
4
Hyperthermia and Controllable Free Radical Coenhanced Synergistic Therapy in Hypoxia Enabled by Near-Infrared-II Light Irradiation.
ACS Nano. 2019 Nov 26;13(11):13144-13160. doi: 10.1021/acsnano.9b05985. Epub 2019 Oct 17.
5
Near-Infrared Light-Initiated Molecular Superoxide Radical Generator: Rejuvenating Photodynamic Therapy against Hypoxic Tumors.
J Am Chem Soc. 2018 Nov 7;140(44):14851-14859. doi: 10.1021/jacs.8b08658. Epub 2018 Oct 26.
6
Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer.
Photochem Photobiol Sci. 2018 Nov 1;17(11):1534-1552. doi: 10.1039/c8pp00271a. Epub 2018 Aug 17.
7
Tumor-Penetrating Nanoparticles for Enhanced Anticancer Activity of Combined Photodynamic and Hypoxia-Activated Therapy.
ACS Nano. 2017 Feb 28;11(2):2227-2238. doi: 10.1021/acsnano.6b08731. Epub 2017 Feb 6.
8
Near-Infrared Light-Triggered Chlorine Radical ( Cl) Stress for Cancer Therapy.
Angew Chem Int Ed Engl. 2020 Nov 16;59(47):21032-21040. doi: 10.1002/anie.202007434. Epub 2020 Sep 7.
9
Defective transition metal hydroxide-based nanoagents with hypoxia relief for photothermal-enhanced photodynamic therapy.
J Mater Chem B. 2021 Jan 28;9(4):1018-1029. doi: 10.1039/d0tb02486d. Epub 2021 Jan 12.
10

引用本文的文献

4
6
Hypoxia-Initiated Supramolecular Free Radicals Induce Intracellular Polymerization for Precision Tumor Therapy.
J Am Chem Soc. 2025 Jan 29;147(4):3488-3499. doi: 10.1021/jacs.4c14847. Epub 2025 Jan 13.
7
Recent advances for enhanced photodynamic therapy: from new mechanisms to innovative strategies.
Chem Sci. 2024 Jul 12;15(31):12234-12257. doi: 10.1039/d3sc07006a. eCollection 2024 Aug 7.

本文引用的文献

2
Highly Charged Ruthenium(II) Polypyridyl Complexes as Lysosome-Localized Photosensitizers for Two-Photon Photodynamic Therapy.
Angew Chem Int Ed Engl. 2015 Nov 16;54(47):14049-52. doi: 10.1002/anie.201507800. Epub 2015 Oct 8.
3
Induction of immunogenic cell death by chemotherapeutic platinum complexes.
Angew Chem Int Ed Engl. 2015 May 26;54(22):6483-7. doi: 10.1002/anie.201500934. Epub 2015 Apr 14.
4
Core-shell structured Fe3O4@TiO2-doxorubicin nanoparticles for targeted chemo-sonodynamic therapy of cancer.
Int J Pharm. 2015;486(1-2):380-8. doi: 10.1016/j.ijpharm.2015.03.070. Epub 2015 Apr 1.
5
Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence.
Angew Chem Int Ed Engl. 2015 Feb 2;54(6):1770-4. doi: 10.1002/anie.201408472. Epub 2014 Dec 5.
6
Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells.
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):E5429-38. doi: 10.1073/pnas.1421438111. Epub 2014 Dec 1.
7
Engineered nanoparticles for drug delivery in cancer therapy.
Angew Chem Int Ed Engl. 2014 Nov 10;53(46):12320-64. doi: 10.1002/anie.201403036. Epub 2014 Oct 7.
8
Using SV119-gold nanocage conjugates to eradicate cancer stem cells through a combination of photothermal and chemo therapies.
Adv Healthc Mater. 2014 Aug;3(8):1283-91. doi: 10.1002/adhm.201400026. Epub 2014 Mar 26.
9
Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging.
Biomaterials. 2014 Apr;35(11):3666-77. doi: 10.1016/j.biomaterials.2014.01.011. Epub 2014 Jan 24.
10
In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers.
Nat Med. 2012 Oct;18(10):1580-5. doi: 10.1038/nm.2933. Epub 2012 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验