Suppr超能文献

分子呼吸分析可识别肾衰竭的呼吸特征。

Molecular breath analysis identifies the breathprint of renal failure.

作者信息

Demirjian Sevag, Paschke Kelly M, Wang Xiaofeng, Grove David, Heyka Robert J, Dweik Raed A

机构信息

Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, OH, United States of America.

出版信息

J Breath Res. 2017 Jun 12;11(2):026009. doi: 10.1088/1752-7163/aa7143.

Abstract

Many uremic solutes retained in chronic kidney disease are volatile, and can be detected by breath testing. We compared the exhaled breath of subjects with end stage renal disease (ESRD) to healthy volunteers to identify volatile compounds that can serve as a potential breathprint for renal failure. We analyzed the exhaled breath of 86 ESRD subjects and 25 healthy volunteers using selected-ion flow-tube mass spectrometry (SIFT-MS). Using a random forests classification model, we identified three known volatiles (2-propanol, ammonia, acetaldehyde) and two unknown volatiles ([Formula: see text] NO76) that were highly significant for discriminating individuals with renal failure from individuals without renal failure (C statistic > 0.99). This study provides preliminary support for the use of exhaled breath as a potential noninvasive screening tool in renal failure.

摘要

慢性肾脏病中潴留的许多尿毒症溶质具有挥发性,可通过呼气检测来发现。我们将终末期肾病(ESRD)患者的呼出气体与健康志愿者的进行比较,以识别可作为肾衰竭潜在呼吸印记的挥发性化合物。我们使用选择离子流管质谱法(SIFT-MS)分析了86名ESRD患者和25名健康志愿者的呼出气体。使用随机森林分类模型,我们识别出三种已知挥发性物质(2-丙醇、氨、乙醛)和两种未知挥发性物质([化学式:见原文] NO76),它们对于区分肾衰竭患者和非肾衰竭患者具有高度显著性(C统计量>0.99)。本研究为将呼出气体用作肾衰竭潜在的非侵入性筛查工具提供了初步支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验