Suppr超能文献

通过热脱附-气相色谱/质谱联用技术探索慢性肾脏病潜在的呼吸生物标志物

Exploration of Potential Breath Biomarkers of Chronic Kidney Disease through Thermal Desorption-Gas Chromatography/Mass Spectrometry.

作者信息

Seong Si-Hyun, Kim Hyun Sik, Lee Yong-Moon, Kim Jae-Seok, Park Sangwoo, Oh Jieun

机构信息

Mass Spectrometry & Advanced Instrumentation Group, Korea Basic Science Institute, Cheonju 28119, Republic of Korea.

College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea.

出版信息

Metabolites. 2023 Jul 11;13(7):837. doi: 10.3390/metabo13070837.

Abstract

Breath volatile organic compound (VOC) analysis is a non-invasive tool for assessing health status; the compositional profile of these compounds in the breath of patients with chronic kidney disease is believed to change with decreasing renal function. We aimed to identify breath VOCs for recognizing patients with chronic kidney disease. Using thermal desorption-gas chromatography/mass spectrometry, untargeted analysis of breath markers was performed using breath samples of healthy controls ( = 18) versus non-dialysis ( = 21) and hemodialysis ( = 12) patients with chronic kidney disease in this cross-sectional study. A total of 303 VOCs alongside 12 clinical variables were used to determine the breath VOC profile. Metabolomic analysis revealed that age, systolic blood pressure, and fifty-eight breath VOCs differed significantly between the chronic kidney disease group (non-dialysis + hemodialysis) and healthy controls. Thirty-six VOCs and two clinical variables that showed significant associations with chronic kidney disease in the univariate analysis were further analyzed. Different spectra of breath volatile organic compounds between the control and chronic kidney disease groups were obtained. A multivariate model incorporating age, 2-methyl-pentane, and cyclohexanone showed high performance (accuracy, 86%) in identifying patients with chronic kidney disease with odds ratios of 0.18 (95% CI, 0.07-2.49, = 0.013); 2.10 (0.94-2.24, = 0.025); and 2.31 (0.88-2.64, = 0.008), respectively. Hence, this study showed that renal dysfunction induces a characteristic profile of breath VOCs that can be used as non-invasive potential biomarkers in screening tests for CKD.

摘要

呼吸挥发性有机化合物(VOC)分析是一种用于评估健康状况的非侵入性工具;据信,慢性肾病患者呼出气体中这些化合物的组成特征会随着肾功能的下降而改变。我们旨在识别用于识别慢性肾病患者的呼吸VOC。在这项横断面研究中,使用热解吸-气相色谱/质谱法,对18名健康对照者、21名非透析慢性肾病患者和12名血液透析慢性肾病患者的呼吸样本进行了非靶向呼吸标志物分析。总共303种VOC以及12个临床变量被用于确定呼吸VOC谱。代谢组学分析显示,慢性肾病组(非透析+血液透析)和健康对照者之间的年龄、收缩压以及58种呼吸VOC存在显著差异。对单变量分析中与慢性肾病有显著关联的36种VOC和2个临床变量进行了进一步分析。获得了对照组和慢性肾病组之间不同的呼吸挥发性有机化合物谱。一个包含年龄、2-甲基戊烷和环己酮的多变量模型在识别慢性肾病患者方面表现出高性能(准确率86%),优势比分别为0.18(95%CI,0.07-2.49,P = 0.013);2.10(0.94-2.24,P = 0.025);和2.31(0.88-2.64,P = 0.008)。因此,本研究表明,肾功能不全可诱导呼吸VOC出现特征性谱,可作为慢性肾病筛查试验中的非侵入性潜在生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05bd/10385797/53c29493a39e/metabolites-13-00837-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验