Suppr超能文献

牙周炎中微生物群落失调的特征

Signature of Microbial Dysbiosis in Periodontitis.

作者信息

Meuric Vincent, Le Gall-David Sandrine, Boyer Emile, Acuña-Amador Luis, Martin Bénédicte, Fong Shao Bing, Barloy-Hubler Frederique, Bonnaure-Mallet Martine

机构信息

CHU Rennes, Pôle Odontologie, Rennes, France

Université de Rennes 1, EA 1254, INSERM 1241, Equipe de Microbiologie, Rennes, France.

出版信息

Appl Environ Microbiol. 2017 Jun 30;83(14). doi: 10.1128/AEM.00462-17. Print 2017 Jul 15.

Abstract

Periodontitis is driven by disproportionate host inflammatory immune responses induced by an imbalance in the composition of oral bacteria; this instigates microbial dysbiosis, along with failed resolution of the chronic destructive inflammation. The objectives of this study were to identify microbial signatures for health and chronic periodontitis at the genus level and to propose a model of dysbiosis, including the calculation of bacterial ratios. Published sequencing data obtained from several different studies (196 subgingival samples from patients with chronic periodontitis and 422 subgingival samples from healthy subjects) were pooled and subjected to a new microbiota analysis using the same Visualization and Analysis of Microbial Population Structures (VAMPS) pipeline, to identify microbiota specific to health and disease. Microbiota were visualized using CoNet and Cytoscape. Dysbiosis ratios, defined as the percentage of genera associated with disease relative to the percentage of genera associated with health, were calculated to distinguish disease from health. Correlations between the proposed dysbiosis ratio and the periodontal pocket depth were tested with a different set of data obtained from a recent study, to confirm the relevance of the ratio as a potential indicator of dysbiosis. Beta diversity showed significant clustering of periodontitis-associated microbiota, at the genus level, according to the clinical status and independent of the methods used. Specific genera (, , , , and ) were highly prevalent (>95%) in health, while other genera (, , , and ) were associated with chronic periodontitis. The calculation of dysbiosis ratios based on the relative abundance of the genera found in health versus periodontitis was tested. Nonperiodontitis samples were significantly identifiable by low ratios, compared to chronic periodontitis samples. When applied to a subgingival sample set with well-defined clinical data, the method showed a strong correlation between the dysbiosis ratio, as well as a simplified ratio (, , and to and ), and pocket depth. Microbial analysis of chronic periodontitis can be correlated with the pocket depth through specific signatures for microbial dysbiosis. Defining microbiota typical of oral health or chronic periodontitis is difficult. The evaluation of periodontal disease is currently based on probing of the periodontal pocket. However, the status of pockets "on the mend" or sulci at risk of periodontitis cannot be addressed solely through pocket depth measurements or current microbiological tests available for practitioners. Thus, a more specific microbiological measure of dysbiosis could help in future diagnoses of periodontitis. In this work, data from different studies were pooled, to improve the accuracy of the results. However, analysis of multiple species from different studies intensified the bacterial network and complicated the search for reproducible microbial signatures. Despite the use of different methods in each study, investigation of the microbiota at the genus level showed that some genera were prevalent (up to 95% of the samples) in health or disease, allowing the calculation of bacterial ratios (i.e., dysbiosis ratios). The correlation between the proposed ratios and the periodontal pocket depth was tested, which confirmed the link between dysbiosis ratios and the severity of the disease. The results of this work are promising, but longitudinal studies will be required to improve the ratios and to define the microbial signatures of the disease, which will allow monitoring of periodontal pocket recovery and, conceivably, determination of the potential risk of periodontitis among healthy patients.

摘要

牙周炎是由口腔细菌组成失衡引发的宿主炎症免疫反应失调所致;这会引发微生物群落失调,同时慢性破坏性炎症无法得到缓解。本研究的目的是在属水平上确定健康和慢性牙周炎的微生物特征,并提出一种失调模型,包括计算细菌比例。将从几项不同研究中获得的已发表测序数据(196份慢性牙周炎患者的龈下样本和422份健康受试者的龈下样本)汇总,并使用相同的微生物种群结构可视化与分析(VAMPS)流程进行新的微生物群分析,以识别健康和疾病特有的微生物群。使用CoNet和Cytoscape对微生物群进行可视化。计算失调比例,即与疾病相关的属的百分比相对于与健康相关的属的百分比,以区分疾病与健康。使用从最近一项研究中获得的另一组数据测试所提出的失调比例与牙周袋深度之间的相关性,以确认该比例作为失调潜在指标的相关性。β多样性显示,在属水平上,根据临床状态且独立于所使用的方法,牙周炎相关微生物群存在显著聚类。特定的属(、、、、和)在健康状态下高度普遍(>95%),而其他属(、、、和)与慢性牙周炎相关。测试了基于健康与牙周炎中发现的属的相对丰度计算失调比例。与慢性牙周炎样本相比,非牙周炎样本通过低比例可显著识别。当应用于具有明确临床数据的龈下样本集时,该方法显示失调比例以及简化比例(、、和至和)与袋深度之间存在强相关性。慢性牙周炎的微生物分析可通过微生物失调的特定特征与袋深度相关联。定义口腔健康或慢性牙周炎典型的微生物群很困难。目前牙周疾病的评估基于对牙周袋的探测。然而,“正在愈合”的袋或有牙周炎风险的龈沟的状态不能仅通过袋深度测量或从业者可用的当前微生物学测试来解决。因此,一种更具体的微生物失调测量方法可能有助于未来牙周炎的诊断。在这项工作中,汇总了不同研究的数据,以提高结果的准确性。然而,对来自不同研究的多个物种的分析强化了细菌网络,并使寻找可重复的微生物特征变得复杂。尽管每项研究使用了不同的方法,但在属水平上对微生物群的研究表明,一些属在健康或疾病中普遍存在(高达95%的样本),从而能够计算细菌比例(即失调比例)。测试了所提出的比例与牙周袋深度之间的相关性,这证实了失调比例与疾病严重程度之间的联系。这项工作的结果很有前景,但需要进行纵向研究以改进比例并定义疾病的微生物特征,这将允许监测牙周袋的恢复情况,并可以想象,确定健康患者中牙周炎的潜在风险。

相似文献

1
Signature of Microbial Dysbiosis in Periodontitis.
Appl Environ Microbiol. 2017 Jun 30;83(14). doi: 10.1128/AEM.00462-17. Print 2017 Jul 15.
2
Periodontal pathogens and clinical parameters in chronic periodontitis.
Mol Oral Microbiol. 2020 Jan;35(1):19-28. doi: 10.1111/omi.12274. Epub 2019 Dec 18.
3
Microbial signatures of oral dysbiosis, periodontitis and edentulism revealed by Gene Meter methodology.
J Microbiol Methods. 2016 Dec;131:85-101. doi: 10.1016/j.mimet.2016.09.019. Epub 2016 Oct 4.
4
Identification of Salivary Microbiota and Its Association With Host Inflammatory Mediators in Periodontitis.
Front Cell Infect Microbiol. 2019 Jun 21;9:216. doi: 10.3389/fcimb.2019.00216. eCollection 2019.
5
Subgingival biodiversity in subjects with uncontrolled type-2 diabetes and chronic periodontitis.
J Periodontal Res. 2013 Feb;48(1):30-6. doi: 10.1111/j.1600-0765.2012.01498.x. Epub 2012 Jul 4.
7
SMDI: An Index for Measuring Subgingival Microbial Dysbiosis.
J Dent Res. 2022 Mar;101(3):331-338. doi: 10.1177/00220345211035775. Epub 2021 Aug 25.
8
Oral microbial dysbiosis in patients with Kostmann syndrome.
J Med Microbiol. 2019 Apr;68(4):609-615. doi: 10.1099/jmm.0.000964. Epub 2019 Mar 15.
9
Subgingival microbiota in individuals with severe chronic periodontitis.
J Microbiol Immunol Infect. 2018 Apr;51(2):226-234. doi: 10.1016/j.jmii.2016.04.007. Epub 2016 May 13.
10
Microbiomes associated with bovine periodontitis and oral health.
Vet Microbiol. 2018 May;218:1-6. doi: 10.1016/j.vetmic.2018.03.016. Epub 2018 Mar 16.

引用本文的文献

1
2
Peridontopathogenic key species in correlation to the current classification system.
Clin Oral Investig. 2025 Jun 12;29(7):339. doi: 10.1007/s00784-025-06413-2.
3
Microbial Markers for Diagnosis and Risk Assessment for Periodontal Diseases: A Systematic Literature Search and Narrative Synthesis.
J Clin Periodontol. 2025 Aug;52 Suppl 29(Suppl 29):125-154. doi: 10.1111/jcpe.14183. Epub 2025 May 25.
5
Feasibility and preliminary findings of a bacterial diversity study in periodontitis: a pilot investigation from the Western Cape.
Front Oral Health. 2025 Apr 23;6:1568393. doi: 10.3389/froh.2025.1568393. eCollection 2025.
6
Bacterial translocation signatures and subgingival microbiome in individuals with periodontitis.
Clin Oral Investig. 2025 May 7;29(6):288. doi: 10.1007/s00784-025-06363-9.
7
Microbial dysbiosis in periodontitis and peri-implantitis: pathogenesis, immune responses, and therapeutic.
Front Cell Infect Microbiol. 2025 Feb 11;15:1517154. doi: 10.3389/fcimb.2025.1517154. eCollection 2025.
8
Structure and composition of early biofilms formed on dental implants are complex, diverse, subject-specific and dynamic.
NPJ Biofilms Microbiomes. 2024 Dec 24;10(1):155. doi: 10.1038/s41522-024-00624-3.
9
Comprehensive Analysis of Sialylation-Related Gene Profiles and Their Impact on the Immune Microenvironment in Periodontitis.
Inflammation. 2025 Aug;48(4):2087-2104. doi: 10.1007/s10753-024-02177-1. Epub 2024 Nov 29.
10
Association of Adult Atopic Dermatitis with Impaired Oral Health and Oral Dysbiosis: A Case-Control Study.
Int Dent J. 2025 Feb;75(1):279-287. doi: 10.1016/j.identj.2024.10.003. Epub 2024 Nov 9.

本文引用的文献

1
The oral microbiome - an update for oral healthcare professionals.
Br Dent J. 2016 Nov 18;221(10):657-666. doi: 10.1038/sj.bdj.2016.865.
2
Looking for a Signal in the Noise: Revisiting Obesity and the Microbiome.
mBio. 2016 Aug 23;7(4):e01018-16. doi: 10.1128/mBio.01018-16.
3
First Cultivation of Health-Associated Tannerella sp. HOT-286 (BU063).
J Dent Res. 2016 Oct;95(11):1308-13. doi: 10.1177/0022034516651078. Epub 2016 May 18.
4
Immune and regulatory functions of neutrophils in inflammatory bone loss.
Semin Immunol. 2016 Apr;28(2):146-58. doi: 10.1016/j.smim.2016.02.002. Epub 2016 Feb 28.
6
Biogeography of a human oral microbiome at the micron scale.
Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):E791-800. doi: 10.1073/pnas.1522149113. Epub 2016 Jan 25.
7
Phylogenetic approaches to microbial community classification.
Microbiome. 2015 Oct 5;3:47. doi: 10.1186/s40168-015-0114-5.
8
Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis.
Genome Med. 2015 Apr 27;7(1):27. doi: 10.1186/s13073-015-0153-3. eCollection 2015.
9
Subgingival microbiota in health compared to periodontitis and the influence of smoking.
Front Microbiol. 2015 Feb 24;6:119. doi: 10.3389/fmicb.2015.00119. eCollection 2015.
10
Subgingival microbial communities in Leukocyte Adhesion Deficiency and their relationship with local immunopathology.
PLoS Pathog. 2015 Mar 5;11(3):e1004698. doi: 10.1371/journal.ppat.1004698. eCollection 2015 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验